

MICROSAR RTE

Safety Guide

Version 4.12.0

Authors Sascha Sommer, Bernd Sigle

Status Released

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 2
based on template version 4.8.0

Document Information

History

Author Date Version Remarks

4.1.0 2013-04-15 Sascha
Sommer

Initial Creation for RTE 4.1 (AUTOSAR 4)

4.2.0 2013-10-29 Sascha
Sommer

Bernd Sigle

Updated for RTE 4.2

Explained MICROSAR OS interrupt locking
APIs.

Corrected review findings especially the
used abbreviations.

4.3.0 2014-02-05 Sascha
Sommer

Updated for RTE 4.3

Clarified Assumptions about VFB Trace
Hooks

Described Inter-ECU sender/receiver from
the ASIL partition

Support for mapped client/server calls
between partitions
Multicore Support

SuspendAllInterrupts is no longer used

4.4.0 2014-06-11 Sascha
Sommer

Updated for RTE 4.4

4.5.0 2014-10-15 Bernd Sigle Updated for RTE 4.5

Rte_DRead added

4.6.0 2014-12-10 Sascha
Sommer

Updated for RTE 4.6

4.7.0 2015-03-18 Sascha
Sommer

Updated for RTE 4.7

4.8.0 2015-07-15 Sascha
Sommer

Updated for RTE 4.8

Described APIs/scheduling of ASIL BSW

4.9.0 2015-12-09 Sascha
Sommer

Updated for RTE 4.9

4.10.0 2016-03-16 Sascha
Sommer

Updated for RTE 4.10

4.11.0 2016-05-17 Sascha
Sommer

Updated for RTE 4.11

4.12.0 2016-07-15 Sascha
Sommer

Updated for RTE 4.12

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_RTE.pdf

3.2.0

[2] AUTOSAR AUTOSAR_SWS_OS.pdf

5.0.0

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 3
based on template version 4.8.0

[3] AUTOSAR AUTOSAR_SWS_StandardTypes.pdf

1.3.0

[4] AUTOSAR AUTOSAR_SWS_PlatformTypes.pdf

2.5.0

[5] AUTOSAR AUTOSAR_SWS_CompilerAbstraction.pdf

3.2.0

[6] AUTOSAR AUTOSAR_SWS_MemoryMapping.pdf

[7] Vector Technical Reference MICROSAR RTE 4.12.0

[8] ISO ISO/DIS 26262 2009

Scope of the Document

This document describes the use of the MICROSAR RTE with regards to functional safety.
All general aspects of the MICROSAR RTE are described in a separate document [7],
which is also part of the delivery.

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 4
based on template version 4.8.0

Contents

1 Purpose... 8

2 Assumptions on the scope of the MICROSAR RTE ... 9

2.1 MICROSAR RTE overview .. 9

2.2 Standards and Legal requirements .. 10

2.3 Functions of the MICROSAR RTE ... 10

2.4 Operating conditions ... 15

2.5 Assumptions ... 16

3 Assumptions on the safety goals of the MICROSAR RTE ... 20

4 Safety concept of the MICROSAR RTE ... 21

4.1 Functional concept .. 21

4.2 Safe state and degradation concept .. 22

4.3 Fault tolerance and diagnostics concept.. 22

5 Integration of the MICROSAR RTE in a new particular context 23

5.1 Assumptions ... 23

5.2 RTE Configuration ... 27

5.3 RTE Generation .. 30

6 Qualification of generated RTE Code ... 31

6.1 Introduction ... 31

6.2 Compiler and Memory Abstraction ... 32

6.3 DataTypes ... 33

6.3.1 Imported Types ... 33

6.3.2 Application Types Generated by the RTE .. 34

6.3.3 Handling of Array and String Data Types ... 34

6.3.4 Datatype specific handling of Interrupt Locks and Spinlocks 35

6.4 SWC Implementation .. 37

6.5 BSW Implementation ... 39

6.6 SWC specific RTE APIs... 40

6.6.1 Rte_Write .. 40

6.6.1.1 Configuration Variant Intra-ECU Without IsUpdated 40

6.6.1.2 Generated Code Intra-ECU Without IsUpdated ... 40

6.6.1.3 Configuration Variant Intra-ECU With IsUpdated ... 42

6.6.1.4 Generated Code Intra-ECU With IsUpdated .. 43

6.6.1.5 Configuration Variant Inter-ECU .. 45

6.6.1.6 Generated Code Inter-ECU ... 45

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 5
based on template version 4.8.0

6.6.2 Rte_Read .. 47

6.6.2.1 Configuration Variant Without IsUpdated ... 47

6.6.2.2 Generated Code Without IsUpdated .. 48

6.6.2.3 Configuration Variant With IsUpdated .. 50

6.6.2.4 Generated Code With IsUpdated... 50

6.6.3 Rte_IsUpdated .. 53

6.6.3.1 Configuration Variant ... 53

6.6.3.2 Generated Code .. 53

6.6.4 Rte_IrvWrite .. 55

6.6.4.1 Configuration Variant ... 55

6.6.4.2 Generated Code .. 55

6.6.5 Rte_IrvRead .. 57

6.6.5.1 Configuration Variant ... 57

6.6.5.2 Generated Code .. 57

6.6.6 Rte_Pim .. 59

6.6.6.1 Configuration Variant ... 59

6.6.6.2 Generated Code .. 59

6.6.7 Rte_CData .. 60

6.6.7.1 Configuration Variant ... 60

6.6.7.2 Generated Code .. 60

6.6.8 Rte_Prm .. 61

6.6.8.1 Configuration Variant ... 61

6.6.8.2 Generated Code .. 61

6.6.9 Rte_Mode ... 63

6.6.9.1 Configuration Variant ... 63

6.6.9.2 Generated Code .. 63

6.6.10 Rte_Call .. 65

6.6.10.1 Configuration Variant ... 65

6.6.10.2 Generated Code .. 65

6.6.11 Rte_Enter .. 67

6.6.11.1 Configuration Variant ... 67

6.6.11.2 Generated Code .. 67

6.6.12 Rte_Exit .. 68

6.6.12.1 Configuration Variant ... 68

6.6.12.2 Generated Code .. 68

6.7 BSW specifc RTE APIs ... 69

6.7.1 SchM_Enter .. 69

6.7.1.1 Configuration Variant ... 69

6.7.1.2 Generated Code .. 69

6.7.2 SchM_Exit ... 69

6.7.2.1 Configuration Variant ... 69

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 6
based on template version 4.8.0

6.7.2.2 Generated Code .. 69

6.8 RTE Lifecycle APIs .. 71

6.8.1 Rte_Start ... 71

6.8.2 Rte_Stop ... 71

6.8.3 Rte_InitMemory ... 71

6.9 RTE Internal Functions .. 71

6.9.1 Rte_MemCpy .. 71

6.9.2 Rte_MemClr .. 71

6.10 RTE Tasks ... 72

6.11 Verification of OS Configuration .. 72

6.12 Verification of Memory Mapping Configuration .. 73

7 Safety Lifecycle Tailoring .. 74

8 Glossary and Abbreviations .. 75

8.1 Glossary .. 75

8.2 Abbreviations .. 75

9 Contact.. 76

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 7
based on template version 4.8.0

Illustrations

Figure 2-1 MICROSAR Safe Architecture .. 15
Figure 2-2 ASIL Decomposition ... 15
Figure 5-1 SWC to OsApplication Mapping .. 27

Tables

Table 2-1 Hazards .. 10
Table 2-2 RTE features for ASIL and QM SWCs... 14
Table 2-3 Assumptions regarding the system architecture and environment 19
Table 3-1 Safety Goals ... 20
Table 3-2 Safe States ... 20
Table 4-1 Safety Requirements .. 21
Table 5-1 Assumptions that need to be verified during the integration 27
Table 8-1 Glossary ... 75
Table 8-2 Abbreviations .. 75

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 8
based on template version 4.8.0

1 Purpose

The SEooC is developed based on assumptions on the intended functionality, use and
context, including external interfaces. To have a complete safety case, the validity of
these assumptions has to be checked in the context of the actual item after integration
of the SEooC.
The application conditions for SEooC provide the assumptions made on the requirements
(including safety requirements) that are placed on the SEooC by higher levels of design
and also on the design external to the SEooC and the assumed safety requirements and
assumptions related to the design of the SEooC.
The ASIL capability of this SEooC designates the capability of the SEooC to
comply with assumed safety requirements assigned with the given ASIL.
Information given by this document helps to check if the SEooC does fulfil the item
requirements, or if a change to the SEooC will be necessary in accordance with the
requirements of ISO 26262.

The following document describes the SEooC MICROSAR RTE in the version 4.12.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 9
based on template version 4.8.0

2 Assumptions on the scope of the MICROSAR RTE

2.1 MICROSAR RTE overview

The MICROSAR RTE implements the AUTOSAR Standard of a Runtime Environment for
AUTOSAR Software Components (SWCs) and Basic Software Modules (BSW). This
means that the RTE is responsible for triggering the execution of SWC and BSW specific
code in the form of runnable and schedulable entities. Moreover, the RTE provides APIs,
for example for inter-ECU and intra-ECU communication and for exclusive area accesses.
These APIs can be used by the runnable entities and BSW modules.
The MICROSAR RTE is a generic software component that is not tied to a specific item.
Item specific functionality will be provided by the SWCs. The SWCs therefore also
determine the ASIL that is required for the RTE. Consequently, the MICROSAR RTE can
be seen as Safety Element out of Context (SEooC) according to ISO26262-10. This
document provides the assumptions regarding the software safety requirements and the
architectural design specification that were used for the development of the MICROSAR
RTE. These assumptions have to be confirmed during item development.
The MICROSAR RTE is completely generated by the MICROSAR RTE Generator that is
developed according to the established SPICE certified process (further referred to as
QM).
If the generated code shall be used in an ASIL context, it has to be qualified according to
the requirements of ISO 26262-6.
This document describes how the RTE configuration needs to look like so that it is in line
with the safety assumptions and so that the complexity of the generated RTE code for
ASIL SWCs is kept low enough to be reviewable for qualification. Review hints are
provided in chapter 6.
The final integration of the RTE into a safety related item then needs to be done by a
functional safety expert.

Please note that this document is an extension to the Technical Reference of the
MICROSAR RTE with focus on safety related issues. Refer to the Technical Reference [7]
for general topics like the RTE configuration, integration of the RTE into an ECU and a
description of the RTE APIs.
An overall description of the RTE and AUTOSAR in general can be found in the AUTOSAR
specifications.

Caution
The MICROSAR RTE Generator was not developed according to ISO26262. This
document gives hints on what needs to be done in order to use the generated code
within an item that is developed according to ISO26262

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 10
based on template version 4.8.0

Safety goals identified for the development result from the following hazard and risk list

ID Description of hazards that could occur

H&R_RTE_1

H&R_RTE_2

H&R_RTE_3

Table 2-1 Hazards

According to ISO26262, the hazard analysis and risk assessment shall be based on the
item definition. As the development started with the unit design, the hazards have to be
identified by the integrator for the specific item in which the RTE shall be integrated.

2.2 Standards and Legal requirements

The MICROSAR RTE Generator was developed according to the AUTOSAR RTE
specification. The generated code can be qualified so that it can be used within an item
that is developed according to ISO26262.

2.3 Functions of the MICROSAR RTE

The MICROSAR RTE provides the following functionality:

> AUTOSAR Runtime Environment according to [1] for QM SWCs and BSW:

> communication between different runnables within the same SWC (explicit and
implicit inter-runnable variables)

> communication between different SWCs on the same ECU (queued and non-
queued explicit and implicit sender/receiver communication, client/server
communication, mode communication)

> communication between SWCs and BSW modules located on the same ECU
(queued and non-queued explicit and implicit sender/receiver communication,
client/server communication, mode communication)

> communication between SWCs on different ECUs (queued and non-queued
explicit and implicit sender/receiver communication)

> Calibration Parameters

> Per-Instance Memories

> Exclusive Areas

Please see the RTE Technical Reference [7] for a full list of supported features.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 11
based on template version 4.8.0

> AUTOSAR Runtime Environment for ASIL SWCs and BSW when the generated RTE
code is qualified according to the requirements of ISO26262 (Code description and
configuration limitations described in this document):

> Possibility to assign SWCs with different safety levels to distinct OS
applications, so that a MPU can be used to provide freedom from interference
with regards to memory

> Support for Basic Tasks

> Cyclic triggering of runnable entities

> Cyclic triggering of schedulable entities

> Per-Instance Memories

> Explicit Inter-Runnable Variables

> Explicit intra-ECU Sender/Receiver Communication with last-is best behaviour
between SWCs with the same and different safety levels

> Explicit inter-ECU Sender/Receiver Communication with last-is best behaviour

> Direct Synchronous Client/Server calls inside the same OS application

> Calibration Parameters

> Explicit Exclusive Areas

> AUTOSAR Runtime Environment for ASIL SWCs when the generated RTE code is
qualified according to the requirements of ISO26262 (Not handled in this document due
to the many possible code variants):

> Support for Extended Tasks

> Init, Background, DataReceived, DataReceptionError, DataSendCompleted
Triggers

> Implicit Sender/Receiver communication

> Queued Sender/Receiver communication

> Synchronous and Asynchronous Client/Server calls to mapped server runnables
in different OS applications

Table 2-2 summarizes the RTE features that are available for ASIL and QM SWCs.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 12
based on template version 4.8.0

Feature

Q
M

 S
W

C
s
 i
n
 t
h

e
 B

S
W

 p
a
rt

it
io

n

S
W

C
s
 s

e
p
a
ra

te
d
 f
ro

m
 t
h

e
 B

S
W

 1

A
S

IL
 S

W
C

s
/B

S
W

Multicore Support   

Runnable Triggers TimingEvent   

InitEvent  

BackgroundEvent  

DataReceivedEvent
4
  

DataReceivedErrorEvent
4
  

DataSendCompletedEvent  

OperationInvokedEvent
4
   

AsynchronousServerCallReturnEvent
4
  

ModeSwitchEvent
4
 

ModeSwitchAckEvent 

SWC Settings Source Code   

Object Code  

Multiple Instantiation  

Indirect API  

Runnable Settings Minimum Start Interval  

Task Settings Basic Tasks   

Extended Tasks  

Calibration Support Rte_CData API   

Rte_Prm API   

Online Calibration 

Per-Instance Memories Rte_Pim API   

Inter-Runnable Variables Rte_IrvWrite API   

Rte_IrvRead API   

Rte_IrvIWrite API  

Rte_IrvIRead API  

Sender/Receiver Communication Rte_Write API   

Rte_Invalidate API  

Rte_Read API   

1
 SWCs can either be assigned to the same partition as the BSW (recommended for QM SWCs, see column 1), or one

or more separate partitions can be created. In this case, no features that require special handling when the RTE is
initialized by the BSW and no features that require direct access to the BSW can be used. The marked features can be
used for QM and ASIL SWCs but only the APIs marked in the column “ASIL SWCs” are described in this document.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 13
based on template version 4.8.0

Feature

Q
M

 S
W

C
s
 i
n
 t
h

e
 B

S
W

 p
a
rt

it
io

n

S
W

C
s
 s

e
p
a
ra

te
d
 f
ro

m
 t
h

e
 B

S
W

 1

A
S

IL
 S

W
C

s
/B

S
W

Rte_DRead API  

Rte_IWrite API  

Rte_IWriteRef API  

Rte_IInvalidate API  

Rte_IRead API  

Rte_IStatus API  

Rte_Feedback API  

Rte_IsUpdated API   

Rte_NeverReceived API
4
  

Rte_Send API
2
  

Rte_Receive API
2
  

inter-ECU communication   

intra-ECU communication   

Unconnected Ports  

transmission acknowledgement  

alive timeout  

rx filters
4
  

Client/Server Communication Rte_Call API   

Rte_Result API  

synchronous calls to unmapped runnables
3
   

synchronous calls to mapped runnables on same task   

synchronous calls to runnables on different tasks
2
  

asynchronous calls  

Mode communication Rte_Switch API 

Rte_Mode API
4
   

Enhanced Rte_Mode API
4
  

Rte_SwitchAck API 

2
 Only supported when all senders/callers are within the same partition. The servers/receivers can be in a different

partition.
3
 Please note that this might not be possible when the server runnable is located in a different OS Application as the

server is executed with the access rights of the caller. Also no additional protection measures are applied when the
communication is between SWCs with different safety level.

4
 Please note that this feature is not possible for QM SWCs when the sender is an ASIL SWC

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 14
based on template version 4.8.0

Feature

Q
M

 S
W

C
s
 i
n
 t
h

e
 B

S
W

 p
a
rt

it
io

n

S
W

C
s
 s

e
p
a
ra

te
d
 f
ro

m
 t
h

e
 B

S
W

 1

A
S

IL
 S

W
C

s
/B

S
W

mode switch acknowledgement 

mode disablings
4
 

Exclusive Areas implicit exclusive areas  

explicit exclusive areas   

Rte_Enter API   

Rte_Exit API   

Implementation Method All InterruptBlocking  

Implementation Method OS InterruptBlocking   

Implementation Method OsResources  

Implementation Method CooperativeRunnablePlacement  

BSW Module Support (SchM) TimingEvent   

Background Event  

explicit exclusive areas   

SchM_Enter API   

SchM_Exit API   

EA Implementation Method All InterruptBlocking   

EA Implementation Method OS InterruptBlocking   

Table 2-2 RTE features for ASIL and QM SWCs

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 15
based on template version 4.8.0

2.4 Operating conditions

The MICROSAR RTE is part of the MICROSAR Safe Architecture (Figure 2-1).

Figure 2-1 MICROSAR Safe Architecture

This architecture is based on the MICROSAR AUTOSAR stack developed with Vector’s
ISO9001 and SPICE based standard quality management.

The Add-On MICROSAR Safe Context extends this stack with an Operating System with
memory protection in order to use the MICROSAR BSW with application software with a
safety integrity level up to ASIL D.

ASIL Decomposition in the MICROSAR Safe Architecture is implemented through software
partitioning as described in ISO 26262 (Figure 2-2).

Figure 2-2 ASIL Decomposition

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 16
based on template version 4.8.0

This means MICROSAR Safe Context provides freedom from interference with regards to
memory so that the QM parts of the software cannot overwrite memory from the ASIL
application. An additional Safe Watchdog module provides freedom from interference with
regards to CPU runtime.

For Safe Communication between different ECUs, the AUTOSAR E2E Library can be
used.

The MICROSAR RTE extends the MICROSAR Safe Context concept to the software
component level. SWCs inherit the ASIL from the safety requirements that are allocated to
them. With the MICROSAR RTE, it is possible to use SWCs with different ASIL as well as
QM SWCs and BSW within the same ECU. The MICROSAR RTE furthermore provides
communication mechanisms that can be used to implement communication between ASIL
and QM SWCs.

A list of assumptions regarding the overall system architecture and development process
is given in the next chapter.

2.5 Assumptions

ID Description of assumption on the scope of the MICROSAR RTE

ASS_RTE_1 The OS provides freedom from interference for different OS Applications
with regards to memory. This means that code in one OS Application
cannot destroy memory in another OS Application.

ASS_RTE_2 The AUTOSAR Memory Abstraction for the target platform and the OS
make it possible to assign RTE/BSW variables to specific OS Applications
so that they can only be written by code that is executed within this OS
Application.
Moreover in case of Multicore, the RTE variables are mapped to
noncacheable RAM so that they can be accessed by all cores.

ASS_RTE_3 The tool chain initializes global variables or the API Rte_InitMemory is
called before the OS is started. Rte_InitMemory initializes variables from
different OS Applications. Therefore it needs to be started without
memory protection.

ASS_RTE_4 The OS allows non protected reads to RTE/BSW variables within the
same and foreign OS Applications.

ASS_RTE_5 Freedom from interference with regards to CPU runtime is provided
through external means, for example with the help of a control flow
monitor. The mechanisms for it are either implemented in a way that the
RTE cannot deactivate them or a review is performed that checks that the
RTE does not impact their operation.

ASS_RTE_6 The OS APIs that are used by the RTE in ASIL parts of the code can be
called from different contexts without interference:

> TerminateTask

> SuspendOSInterrupts

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 17
based on template version 4.8.0

> osDisableLevelUM (MICROSAR OS)

> osDisableLevelKM (MICROSAR OS)

> osDisableLevelAM (MICROSAR OS)

> osDisableGlobalUM (MICROSAR OS)

> osDisableGlobalKM (MICROSAR OS)

> osDisableGlobalAM (MICROSAR OS)

> ResumeOSInterrupts

> osRteEnableLevelUM (MICROSAR OS)

> osRteEnableLevelKM (MICROSAR OS)

> osRteEnableLevelAM (MICROSAR OS)

> osRteEnableGlobalUM (MICROSAR OS)

> osRteEnableGlobalKM (MICROSAR OS)

> osRteEnableGlobalAM (MICROSAR OS)

> GetSpinlock (Multicore Systems)

> ReleaseSpinlock (Multicore Systems)

ASS_RTE_7 The OS provides at least the APIs

> SuspendOSInterrupts

> osDisableLevelUM (MICROSAR OS)

> osDisableLevelKM (MICROSAR OS)

> osDisableLevelAM (MICROSAR OS)

> osDisableGlobalUM (MICROSAR OS)

> osDisableGlobalKM (MICROSAR OS)

> osDisableGlobalAM (MICROSAR OS)

> ResumeOSInterrupts

> osRteEnableLevelUM (MICROSAR OS)

> osRteEnableLevelKM (MICROSAR OS)

> osRteEnableLevelAM (MICROSAR OS)

> osRteEnableGlobalUM (MICROSAR OS)

> osRteEnableGlobalKM (MICROSAR OS)

> osRteEnableGlobalAM (MICROSAR OS)

with the same or higher ASIL than the SWCs

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 18
based on template version 4.8.0

In Multicore Systems, the OS also needs to provide the APIs

> GetSpinlock

> ReleaseSpinlock

with the same or higher ASIL than the SWCs

ASS_RTE_8 The RTE configuration is chosen in such a way that the
OS/System mechanisms for freedom from interference (memory and
runtime) can also be used to implement freedom from interference for
SWCs with different ASIL. This makes it necessary to map SWCs with
different ASIL to different OS Applications. All OS Applications with SWCs
that do not have the highest ASIL need to be nontrusted. This includes
the OS Application of the BSW. See also chapter 5.2.

ASS_RTE_9 The RTE configuration is chosen in such a way that no OS APIs need to
be called in the RTE APIs or the TASK bodies that violate the safety
requirements of the ASIL SWCs.

The RTE code calls the following OS APIs:

> SetRelAlarm

> CancelAlarm

> SetEvent

> GetEvent

> ClearEvent

> WaitEvent

> GetTaskID

> ActivateTask

> TerminateTask

> Schedule

> ChainTask

> GetResource

> ReleaseResource

In case of multicore systems also the API

> GetCoreID

is called.

ASS_RTE_10 The RTE configuration is chosen in such a way that no SWC needs to
directly call methods in (Service-) SWCs with lower ASIL and no (Service-
) SWCs with lower ASIL needs to call methods in ASIL SWCs except for
the case when the SWCs explicitly allow this kind of usage. If necessary,
this work is delegated to wrapper SWCs in the same OS Application as
the called/calling SWC. Direct calls can moreover be avoided when the
server runnables are mapped to tasks. See also chapter 5.2.

ASS_RTE_11 The RTE configuration is chosen in such a way that the RTE APIs or

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 19
based on template version 4.8.0

TASKS for a SWC do not contain calls to BSW modules with lower ASIL
than the SWC itself that might cause interference. If necessary, this work
is delegated to wrapper SWCs in the same OS Application as the BSW
modules. For external communication, the RTE proxies the calls to the
Com module. See also chapter 5.2.

ASS_RTE_12 The RTE does not need to provide freedom from interference for
communication. In an AUTOSAR system, the E2ELibrary that is directly
called by the SWCs is responsible for Safe communication. Nevertheless,
the RTE provides APIs that can be called by the E2ELibrary.

ASS_RTE_13 The Generated RTE code for ASIL SWCs is qualified according to the
requirements of ISO26262 by the integrator so that it reaches the same
ASIL as the SWCs themselves. This is necessary because the RTE
Generator was only developed with Vectors standard quality
management (QM).

ASS_RTE_14 The hardware is suited for safety relevant software according to the
requirements of ISO26262. The hardware requirements are mostly
determined by the SWCs that shall be supported by the RTE. The
MICROSAR RTE does not impose other hardware safety requirements
as those that are already required by the SWCs and the OS.

ASS_RTE_15 The development tool chain (for example editors, compilers, linkers,
make environment, flash utilities) is suited for the development of safety
relevant software according to the requirements of ISO26262. All tools
need to reach the appropriate Tool Qualification Level (TCL).

Table 2-3 Assumptions regarding the system architecture and environment

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 20
based on template version 4.8.0

3 Assumptions on the safety goals of the MICROSAR RTE

ID ASIL Description of hazards
that could occur

Ref assumption Ref H & R

SG_RTE_1

SG_RTE_2

Table 3-1 Safety Goals

According to ISO26262, safety goals are determined for each hazardous event evaluated
in the hazard analysis. As the hazard analysis could not be done due to the unknown
target item, the safety goals have to be identified by the integrator once the hazard
analysis is done.

ID Description of safe state Ref safety goal

SS_RTE_1

SS_RTE_2

Table 3-2 Safe States

Due to the missing safety goals, no safe states could be identified that can be used to
achieve a safety goal. The safe states have to be identified by the integrator once the
safety goals are known.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 21
based on template version 4.8.0

4 Safety concept of the MICROSAR RTE

4.1 Functional concept

The MICROSAR RTE was developed with the following assumptions regarding the safety
requirements. No references to safety goals and target ASIL are listed for the requirements
as these depend on the particular context into which the RTE is integrated.

ID Description of safety requirement ASIL Ref SG, ASS

SR_RTE_1 The RTE (with the help of a MPU and an appropriate
OS) shall provide freedom from interference with
regards to memory for ASIL SWCs. This means that
the RTE shall protect ASIL SWCs from BSW with
lower ASIL. Additionally, the RTE shall also protect
ASIL SWCs also from other SWCs with lower ASIL.
The protection shall include the inter-runnable
variables, per instance memories, sender buffers and
stacks of the SWCs. Moreover, the protection shall be
transparent to the SWCs, e.g. it shall be possible to
access the protected inter-runnable variables and
per-instance memories with the default AUTOSAR
RTE APIs Rte_IrvWrite, Rte_IrvRead and Rte_Pim.

SR_RTE_2 The RTE shall provide intra-ECU communication
mechanism for SWCs with the same and different
ASIL. The communication shall be possible through
the AUTOSAR RTE APIs Rte_Read and Rte_Write
that are used for non-queued sender/receiver
communication.

SR_RTE_3 The RTE shall provide mechanisms for data
consistency that can be used by the ASIL SWCs to
prevent concurrent accesses to shared ressources.
(explicit exclusive areas). The realization of the
exclusive areas shall be possible through the
AUTOSAR RTE APIs Rte_Enter and Rte_Exit.

SR_RTE_4 The RTE shall provide access to calibration
parameters for the ASIL SWCs. It shall be possible to
access the calibration parameters with the default
AUTOSAR RTE APIs Rte_Prm and Rte_CData.

Table 4-1 Safety Requirements

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 22
based on template version 4.8.0

4.2 Safe state and degradation concept

The MICROSAR RTE does not support degradation to the safe state as the safe state
depends on the functionality of the item. Safe state degradation therefore also has to be
implemented by the application or by the OS. Memory protection faults are supposed to be
handled by the OS.

4.3 Fault tolerance and diagnostics concept

The fault tolerance and diagnostics concept depends on the requirements of the
Application SWCs. It has to be implemented within the application SWCs.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 23
based on template version 4.8.0

5 Integration of the MICROSAR RTE in a new particular context

5.1 Assumptions

ID ASIL Description of assumptions, safety goals, safety
requirements

Validity check

ASS_RTE_1 The OS provides freedom from interference for
different OS Applications with regards to memory.
This means that code in one OS Application cannot
destroy memory in another OS Application.

ASS_RTE_2 The AUTOSAR Memory Abstraction for the target
platform and the OS make it possible to assign
RTE/BSW variables to specific OS Applications so
that they can only be written by code that is executed
within this OS Application.

Moreover in case of Multicore, the RTE variables are
mapped to noncacheable RAM so that they can be
accessed by all cores.

ASS_RTE_3 The tool chain initializes global variables or the API
Rte_InitMemory is called before the OS is started.
Rte_InitMemory initializes variables from different OS
Applications. Therefore it needs to be started without
memory protection.

ASS_RTE_4 The OS allows non protected reads to RTE/BSW
variables within the same and foreign OS
Applications.

ASS_RTE_5 Freedom from interference with regards to CPU
runtime is provided through external means, for
example with the help of a control flow monitor. The
mechanisms for it are either implemented in a way
that the RTE cannot deactivate them or a review is
performed that checks that the RTE does not impact
their operation.

ASS_RTE_6 The OS APIs that are used by the RTE in ASIL parts
of the code can be called from different contexts
without interference:

> TerminateTask

> SuspendOSInterrupts

> osDisableLevelUM (MICROSAR OS)

> osDisableLevelKM (MICROSAR OS)

> osDisableLevelAM (MICROSAR OS)

> osDisableGlobalUM (MICROSAR OS)

> osDisableGlobalKM (MICROSAR OS)

> osDisableGlobalAM (MICROSAR OS)

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 24
based on template version 4.8.0

> ResumeOSInterrupts

> osRteEnableLevelUM (MICROSAR OS)

> osRteEnableLevelKM (MICROSAR OS)

> osRteEnableLevelAM (MICROSAR OS)

> osRteEnableGlobalUM (MICROSAR OS)

> osRteEnableGlobalKM (MICROSAR OS)

> osRteEnableGlobalAM (MICROSAR OS)

> GetSpinlock (Multicore Systems)

> ReleaseSpinlock (Multicore Systems)

ASS_RTE_7 The OS provides at least the APIs

> SuspendOSInterrupts

> osDisableLevelUM (MICROSAR OS)

> osDisableLevelKM (MICROSAR OS)

> osDisableLevelAM (MICROSAR OS)

> osDisableGlobalUM (MICROSAR OS)

> osDisableGlobalKM (MICROSAR OS)

> osDisableGlobalAM (MICROSAR OS)

> ResumeOSInterrupts

> osRteEnableLevelUM (MICROSAR OS)

> osRteEnableLevelKM (MICROSAR OS)

> osRteEnableLevelAM (MICROSAR OS)

> osRteEnableGlobalUM (MICROSAR OS)

> osRteEnableGlobalKM (MICROSAR OS)

> osRteEnableGlobalAM (MICROSAR OS)

with the same or higher ASIL than the SWCs

In Multicore Systems, the OS also needs to provide
the APIs

> GetSpinlock

> ReleaseSpinlock

with the same or higher ASIL than the SWCs

ASS_RTE_8 The RTE configuration is chosen in such a way that
the
OS/System mechanisms for freedom from
interference (memory and runtime) can also be used

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 25
based on template version 4.8.0

to implement freedom from interference for SWCs
with different ASIL. This makes it necessary to map
SWCs with different ASIL to different OS Applications.
All OS Applications with SWCs that do not have the
highest ASIL need to be nontrusted. This includes the
OS Application of the BSW. See also chapter 5.2.

ASS_RTE_9 The RTE configuration is chosen in such a way that
no OS APIs need to be called in the RTE APIs or the
TASK bodies that violate the safety requirements of
the ASIL SWCs.

The RTE codes calls the following APIs:

> SetRelAlarm

> CancelAlarm

> SetEvent

> GetEvent

> ClearEvent

> WaitEvent

> GetTaskID

> ActivateTask

> TerminateTask

> Schedule

> ChainTask

> GetResource

> ReleaseResource

In case of multicore systems also the API

> GetCoreID

is called.

ASS_RTE_10 The RTE configuration is chosen in such a way that
no SWC needs to directly call methods in (Service-)
SWCs with lower ASIL and no (Service-) SWCs with
lower ASIL needs to call methods in ASIL SWCs
except for the case when the SWCs explicitly allow
this kind of usage. If necessary, this work is delegated
to wrapper SWCs in the same OS Application as the
called/calling SWC. Direct calls can moreover be
avoided when the server runnables are mapped to
tasks. See also chapter 5.2.

ASS_RTE_11 The RTE configuration is chosen in such a way that
the RTE APIs or TASKS for a SWC do not contain
calls to BSW modules with lower ASIL than the SWC
itself that might cause interference. If necessary, this
work is delegated to wrapper SWCs in the same OS

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 26
based on template version 4.8.0

Application as the BSW modules. For external
communication, the RTE proxies the calls to the Com
module. See also chapter 5.2.

ASS_RTE_12 The RTE does not need to provide freedom from
interference for communication. In an AUTOSAR
system, the E2ELibrary that is directly called by the
SWCs is responsible for Safe communication.
Nevertheless, the RTE provides APIs that can be
called by the E2ELibrary.

ASS_RTE_13 The Generated RTE code for ASIL SWCs is qualified
according to the requirements of ISO26262 by the
integrator so that it reaches the same ASIL as the
SWCs themselves. This is necessary because the
RTE Generator was only developed with Vectors
standard quality management (QM).

ASS_RTE_14 The hardware is suited for safety relevant software
according to the requirements of ISO26262. The
hardware requirements are mostly determined by the
SWCs that shall be supported by the RTE. The
MICROSAR RTE does not impose other hardware
safety requirements as those that are already
required by the SWCs and the OS.

ASS_RTE_15 The development tool chain (for example editors,
compilers, linkers, make environment, flash utilities) is
suited for the development of safety relevant software
according to the requirements of ISO26262. All tools
need to reach the appropriate Tool Qualification Level
(TCL).

SR_RTE_1 The RTE (with the help of a MPU and an appropriate
OS) shall provide freedom from interference with
regards to memory for ASIL SWCs. This means that
the RTE shall protect ASIL SWCs from BSW with
lower ASIL. Additionally, the RTE shall also protect
ASIL SWCs also from other SWCs with lower ASIL.
The protection shall include the inter-runnable
variables, per instance memories, sender buffers and
stacks of the SWCs. Moreover, the protection shall be
transparent to the SWCs, e.g. it shall be possible to
access the protected inter-runnable variables and
per-instance memories with the default AUTOSAR
RTE APIs Rte_IrvWrite, Rte_IrvRead and Rte_Pim.

SR_RTE_2 The RTE shall provide intra-ECU communication
mechanism for SWCs with the same and different
ASIL. The communication shall be possible through
the AUTOSAR RTE APIs Rte_Read and Rte_Write
that are used for non-queued sender/receiver
communication.

SR_RTE_3 The RTE shall provide mechanisms for data
consistency that can be used by the ASIL SWCs to
prevent concurrent accesses to shared ressources.
(explicit exclusive areas). The realization of the

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 27
based on template version 4.8.0

exclusive areas shall be possible through the
AUTOSAR RTE APIs Rte_Enter and Rte_Exit

SR_RTE_4 The RTE shall provide access to calibration
parameters for the ASIL SWCs. It shall be possible to
access the calibration parameters with the default
AUTOSAR RTE APIs Rte_Prm and Rte_CData.

Table 5-1 Assumptions that need to be verified during the integration

The MICROSAR RTE Generator does not produce ASIL code. However, the following
chapter tries to explain how an RTE configuration needs to look like so that it is both, in
line with the assumptions given in the previous table, and that it can be reviewed to reach
compliance with a certain ASIL level.

5.2 RTE Configuration

During the software design, it has to be decided if the SWCs need to be developed with a
certain ASIL. In the MICROSAR RTE, OS Applications are used to partition the SWCs of
an ECU according to their ASIL. Therefore, for every used ASIL, at least one OS
Application has to be created. Furthermore an OS Application for the QM BSW needs to
be created. It can also be used for the QM SWCs. All OS Applications apart from the OS
Applications with the highest ASIL need to be nontrusted. An example is given in Figure
5-1.

Figure 5-1 SWC to OsApplication Mapping

The assignment of the SWCs to the OS Applications happens through the task mapping.

OsApplication3

(ASIL A)

OsApplication2

(ASIL D)

OsApplication1 (QM)

Software
Component

Software
Component

Software
Component

Software
Component

OsApplication4

(ASIL D)

Software
Component

MICROSAR RTE

OsApplication1
(QM)

BSW

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 28
based on template version 4.8.0

That means the RTE tasks need to be assigned to the OS Applications. Every SWC then
needs to be mapped to the appropriate OS Application by mapping its runnables to tasks
of that OS Application.

As the BSW OS Application is nontrusted, the following memory protection limitations from
the RTE Technical Reference apply for all SWCs:

> All schedulable entities of QM BSW Modules need to be assigned to the BSW OS
Application

> All SWCs with mode provide ports need to be assigned to the BSW OS Application.

> All SWCs that contain runnables with mode disabling dependencies or mode triggers
need to be assigned to the BSW OS Application.

> Direct client/server calls between OS Applications are not allowed. Exceptions are
possible when the servers explicitly allow that they are run within the contexts of the
client OS Applications. The RTE generator issues a warning when it detects direct
client/server calls between OS Applications.

Caution
When a client directly calls a server in another OS Application, the server runnable will
run within the OS Application of the client. This means it can access resources e.g.
memory that are normally only supposed to be accessed by runnables in the client OS
Application. Moreover the server is not able to access resources that can only be
accessed by his own OS Application.

This might violate the safety requirements of the SWCs.

It is assumed that the MICROSAR RTE is used together with MICROSAR OS Safe
Context. While most APIs of MICROSAR OS Safe Context can be called from arbitrary
contexts without causing interference, only certain APIs are implemented in a way that
ASIL code can rely on them. Therefore, the following RTE features that rely on ASIL OS
functionality cannot be used in ASIL SWCs:

> Extended Tasks

> Minimum Start Interval

> Exclusive Areas with implementation methods other than Interrupt Blocking

> Alive timeout

> Triggering of runnables in other SWCs e.g. by OnDataReception,
OnDataReceptionError, OnDataSendCompletion triggers of a sender/receiver port

The following general RTE feature cannot be used when ASIL SWCs are present because
it requires calls to non ASIL BSW modules:

> Measurement with XcpEvents

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 29
based on template version 4.8.0

To simplify the review, it is also recommended to only use a subset of the RTE features in
the ASIL SWCs. The review chapter in this document only describe the RTE APIs for the
case when the following features are not used:

> VFB Trace Hooks

> Invalidation

> Rx Filters

> Implicit Exclusive Areas

> Implicit Inter-Runnable Variables

> Multiple Instantiation

> Object Code SWCs

> Unconnected ports

> Implicit sender/receiver communication

> Online calibration

> Transmission acknowledgement

> Never Received API

> Enhanced Rte_Mode API

> Development Error Tracer (DET)

> Data Prototype Mappings

Summarized, ASIL SWCs may use the following RTE features without violating the RTE
safety assumptions and with the goal in mind to have easy to review code:
> Runnables with cyclic triggers

> Runnables with OperationInvokedTriggers

> Basic tasks. (This means all runnables on an ASIL task need to share the same cycle
time and offset.)

> Explicit Intra-ECU Sender/Receiver communication (Last-Is-Best)

> Explicit Inter-ECU Sender/Receiver communication (Last-Is-Best)

> Rte_IsUpdated API

> Synchronous Client/Server calls to unmapped runnables or runnables with
CanBeInvokedConcurrently set to true. The client and server need to be mapped to the
same OS Application. Exceptions are possible when the servers explicitly allow such
usage.

> Explicit Inter-Runnable variables

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 30
based on template version 4.8.0

> Mode require ports without mode triggers and mode disabling dependencies

> Explicit exclusive areas

> Per-instance memories

> SWC local Calibration parameters

> Calibration ports

Please note that the names of the objects in the RTE configuration are used in identifiers
in the generated RTE and OS C code. The names have to be chosen in such a way that
the identifiers do not exceed the limits of the target compiler and that they do not conflict
with other identifiers from other modules.

Also the filenames of the generated files are created from object names in the RTE
configuration. It also needs to be checked that the file names do not exceed the limits of
the target compiler.

5.3 RTE Generation

Once the RTE is configured it can be generated with the MICROSAR RTE Generator.

The MICROSAR RTE Generator will run some checks prior to the generation.

Errors in the Configuration are reported with an [Error] prefix. The generator will abort the
generation in this case. Warnings are reported with [Warning]. Every warning has to be
checked and it needs to be assured that the warnings do not cause any harm.

Moreover after the generation, it has to be checked that the output directory contains no
old files from previous generations. The RTE Generator provides a magic number pre-
processor check at the end of the files that will issue a compile error when it detects an old
file. Please note that selective file generation needs to be disabled in order to use the
magic number check.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 31
based on template version 4.8.0

6 Qualification of generated RTE Code

The following section gives some hints on what needs to be verified when the RTE shall
be used for ASIL SWCs. The API descriptions show how the RTE code is supposed to look
like according to the generator design when the configuration is based on the description
in chapter 5.2. If the generated code diverges from the code descriptions, the integrator
has to verify that the differences do not cause any harm.

Caution
The MICROSAR RTE generator does not generate ASIL code. If the RTE code shall be
used for ASIL SWCs, the generated code has to be qualified. ISO26262 lists various
methods that can or have to be applied to reach a certain ASIL. The integrator has to
decide which methods are suited for his project and take the required actions.

6.1 Introduction

As the generated RTE code heavily depends on the names of the objects from the RTE
configuration, the API descriptions use the following placeholders:

<oa> OS Application

<soa> sender OS Application

<roa> receiver OS Application

<bswoa> BSW OS Application

<c> component type name

<bsw> BSW module name

<sc> sender component type name

<rc> receiver component type name

<ci> component instance name

<sci> sender component instance name

<rci> sender component instance name

<p> port prototype

<sp> sender port prototype

<rp> receiver port prototype

<d> data element prototype

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 32
based on template version 4.8.0

<sd> sender data element prototype

<rd> sender data element prototype

<o> operation prototype

<re> runnable entity name

<res> runnable/schedulable entity symbol

<sre> server runnable entity name

<sres> server runnable entity symbol

<signalid> identifier for signal specific buffers

<nocache> _NOCACHE extension for variables that are accessed from multiple cores

<t> data type

<tp> pointer to data type

<name> per-instance memory, calibration parameter, exclusive area or inter-runnable
variable name

<Lock> Interrupt Locking / Spinlock function as described in chapter 6.3.4

<UnLock> Interrupt Unlocking / Spinlock function as described in chapter 6.3.4

<Rte_MemCpy> Memory Copy function as described in chapter 6.9.1

Placeholders written in upper case, for example <P>, mean that the replacement string is
written in upper case.

6.2 Compiler and Memory Abstraction

The RTE code uses the AUTOSAR compiler and memory abstraction for functions,
function prototypes and variable declarations.

#define RTE_START_SEC_<secname>

#include "MemMap.h"

<Object0>

[<Object1>]

[<ObjectN>]

#define RTE_STOP_SEC_<secname>

#include "MemMap.h"

The memory abstraction is used to assign RTE variables to OS Applications. <secname>
is the used memory section, for example CODE, VAR, CONST.
All variables are assigned to the OS Application in which they are written.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 33
based on template version 4.8.0

Section defines contain the name of the OS Application with the exception of the section
defines for the OS Application that contains the BSW. It directly uses the section defines of
the RTE.

In case of multicore systems, the memory abstraction defines use an additional
_NOCACHE extension when variables are accessed from multiple cores. It has to be
assured that variables with this extension are mapped to noncacheable RAM and that all
variables that are accessed from multiple cores are mapped with this extension.

The RTE includes the file MemMap.h that has to issue the correct compiler pragmas for
the platform so that variables within the memory abstraction are mapped to the correct
protected memory sections. See the Technical Reference of the OS of how this can be
accomplished. During integration it has to be assured that the mapping mechanisms
function properly. The RTE section and compiler abstraction defines are described in the
RTE Technical Reference.

Besides these, the MICROSAR RTE uses the following macros from the compiler
abstraction:

 FUNC

 AUTOMATIC

 STATIC

 NULL_PTR

 FUNC_P2CONST

 P2VAR

 P2CONST

 CONST

 CONSTP2CONST

 P2FUNC

 VAR

Their functionality needs to be verified for correctness on the target platform.

6.3 DataTypes

6.3.1 Imported Types

The MICROSAR RTE imports the following types from Std_Types.h and the
Platform_Types.h header that is included by Std_Types.h. It needs to be assured that they
are mapped to the correct platform specific types:

 boolean

 uint8

 uint16

 uint32

 uint64

 sint8

 sint16

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 34
based on template version 4.8.0

 sint32

 sint64

 float32

 float64

 uint8_least

 uint16_least

 uint32_least

 sint8_least

 sint16_least

 sint32_least

 Std_ReturnType

Furthermore the following imported defines need to be correct:

 STD_ON

 STD_OFF

6.3.2 Application Types Generated by the RTE

The RTE Generator generates the data types from the configuration to the header
Rte_Type.h. It has to be checked that Rte_Type.h contains all configured data types and
that the datatypes are in line with the configuration. The RTE generator only generates
implementation data types.

Besides the name of the generated data type, also its properties have to be checked. For
primitive types, this means that the upper and lower limit defines are identical to the ones
that are specified in the configuration and that the base type that is used for the data type
covers its full range. Upper and lower Limits are only generated to the file Rte_<c>_Type.h
when a components uses the application data type that defines the limits.

For complex array types, it has to be checked that the base type is the same as the one
that is configured in the configuration. Furthermore, the length of the array needs to be
identical to the one from the configuration for array types.

For complex record types, the types, names and order of the contained elements needs to
be the same as specified in the configuration.

For enumerations, all generated enumeration literals also need to be defined to the values
that are specified in the configuration. It has to be checked that the list of literals is
complete and that no literal conflicts with other identifiers. The literals are generated to
Rte_<c>_Type.h when a component uses a datatype that references a compu method with
a texttable.

6.3.3 Handling of Array and String Data Types

In the RTE APIs, arrays are passed as pointer to the array base type.

For simplicity, the code descriptions in the following chapters only show examples with
primitive integer types.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 35
based on template version 4.8.0

6.3.4 Datatype specific handling of Interrupt Locks and Spinlocks

The RTE implements data consistency mechanisms in some of its APIs. Data consistency
is provided with the SuspendOSInterrupts and ResumeOSInterrupts OS APIs on a single
core. As the calls to these OS APIs significantly increase the runtime of the RTE APIs, the
RTE tries to optimize them away when they are not needed.

The APIs are optimized away when the variables can be written atomically by the ECU.

The behaviour is controlled by the setting of the parameter AtomicVariableAccess in the
configuration of the EcuC module in the ECUC configuration file.

For simplicity, the code descriptions in the following chapters only show APIs in which the
interrupt locks are not optimized away. When the RTE code for the ASIL SWCs is verified,
it needs to be checked that the optimization is correct, e.g. that a variable can really be
accessed atomically by the ECU.

Some versions of MICROSAR OS provide optimized interrupt locking APIs. The RTE will
use these APIs when they are available.

For nontrusted OS Applications the RTE may call

> osDisableLevelUM

> osDisableLevelAM

> osDisableGlobalUM

> osDisableGlobalAM

to disable the interrupts and

> osEnableLevelUM

> osEnableLevelAM

> osEnableGlobalUM

> osEnableGlobalAM

to reenable the interrupts.

For trusted OS Applications the RTE may call

> osDisableLevelKM

> osDisableLevelAM

> osDisableGlobalKM

> osDisableGlobalAM

to disable the interrupts and

> osEnableLevelKM

> osEnableLevelAM

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 36
based on template version 4.8.0

> osEnableGlobalKM

> osEnableGlobalAM

to reenable the interrupts.

The optimized APIs are mapped to the macros
Rte_DisableOSInterrupts/Rte_DisableAllInterrupts and
Rte_EnableOSInterrupts/Rte_EnableAllInterrupts.

In the following code examples, <Lock> resolves to SuspendOSInterrupts, or
Rte_DisableOSInterrupts/Rte_DisableAllInterrupts. <UnLock> resolves to
ResumeOSInterrupts or Rte_EnableOSInterrupts/Rte_EnableAllInterrupts. The RTE
generator tries to use the “Disable” variant whenever possible as it is usually faster. It has
to be assured that this variant is only used, when there are no nested calls to the locking
APIs. They cannot be used when the runnable is configured to enter or to run in an
exclusive area. For every locking operation the matching unlocking operation needs to be
called.

It needs to be assured that no included header breaks these operation (e.g. by redefining
them).

On multicore systems, locking the interrupts will only provide data consistency on the core
for which the RTE API is called. In order to provide data consistency also when variables
are accessed from different cores, the <Lock> and <UnLock> operations are extended
with additional GetSpinlock and ReleaseSpinlock calls.

Example:

SuspendOSInterrupts();

(void)GetSpinlock(<SpinlockId>);

Access data structures.

(void)ReleaseSpinlock(<SpinlockId>);

ResumeOSInterrupts();

All places where the protected data structures are accessed need to be protected by the
same Spinlock (same <SpinlockId>)

The interrupt lock APIs can be omitted when the spinlock cannot be accessed by multiple
tasks on the same core.

Instead of SuspendOSInterrupts and ResumeOSInterrupts also
Rte_DisableOSInterrupts/Rte_DisableAllInterrupts and

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 37
based on template version 4.8.0

Rte_EnableOSInterrupts/Rte_EnableAllInterrupts can be used, the distinction is the same
as explained above.

6.4 SWC Implementation

The RTE is the module that glues the SWCs to the AUTOSAR stack. For this, the RTE
generator generates a list of files that provide the datatypes and APIs for the SWCs and
that call the runnable entities of the SWCs. A description of all generated files can be found
in the RTE Technical Reference.

From the generated files, the SWCs shall only include the appropriate RTE header
Rte_<c>.h directly. It provides the SWC specific functionality.

The SWC implementation shall at least contain all configured runnable entities.

The signature of the runnable entities is

FUNC(void, <c>_CODE) <res>(<parglist><arglist>)

or

FUNC(Std_ReturnType, <c>_CODE) <res>(<parglist><arglist>)

for server runnables with return type.

<arglist> is “void” for non-server runnables, otherwise it contains the arguments of the
server operation.

<parglist> is empty for runnables without port defined arguments, otherwise it contains the
port defined arguments.

define <c>_START_SEC_CODE

include "MemMap.h"

FUNC(void, <c>_CODE) <res>(<parglist><arglist>)

{

}

define <c>_STOP_SEC_CODE

include "MemMap.h"

Runnable entity implementations shall be surrounded by <c>_CODE memory abstraction
defines as shown above.

Every runnable entity shall have a prototype in Rte_<c>.h that is also surrounded by the
same memory abstraction defines.

Server runnables with return value shall return a value in all return paths.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 38
based on template version 4.8.0

The value shall be RTE_E_OK or one of the application return codes from the
configuration. The application return code defines are contained in the file Rte_<c>.h. It
needs to be checked that the return defines provide the same value as described in the
configuration.

Runnable entities in ASIL SWC should only contain calls to the following RTE APIs:

> Std_ReturnType Rte_Write_<p>_<d>(<data>)

> Std_ReturnType Rte_Read_<p>_<d>(<data>)

> boolean Rte_IsUpdated_<p>_<d>()

> Std_ReturnType Rte_Call_<p>_<o>(<data_1>, <data_n>)

> <type> Rte_Pim_<name>()

> <return> Rte_CData_<name>()

> <return> Rte_Prm_<p>_<name>()

> <return> Rte_IrvRead_<re>_<name>()

> void Rte_IrvWrite_<re>_<name>(<data>)

> void Rte_Enter_<name>()

> void Rte_Exit_<name>()

> Rte_ModeType_<m> Rte_Mode_<p>_<d>()

The Rte_Write, Rte_Read, Rte_IsUpdated, Rte_Call, Rte_IrvRead, Rte_IrvWrite,
Rte_Enter, Rte_Exit APIs are only allowed to be called from a runnable when the runnable
is configured to access the port data element/port operation/inter-runnable
variable/exclusive area for which the API is generated.

The Rte_CData and Rte_Pim APIs are only allowed to be called from runnables in the
SWCs in which they are configured.

The Rte_Prm API is only allowed to be called from runnables in the SWC that contains the
matching calibration receiver port.

For every API that is called by the SWC implementation, it needs to be checked, that the
called API is configured for the SWC and that Rte_<c>.h declares the API.

Furthermore, it needs to be assured that RTE and OS variables are only modified with
afore mentioned RTE API calls. The variables are not allowed to be modified directly within
the runnable code.

It also has to be assured that the RTE APIs with parameters are called with the correct
parameters with regards to type and access rights. When pointers are passed to the RTE
APIs, it has to be assured that the pointers stay valid during the whole runtime of the RTE
API and that the underlying objects are not modified outside the RTE API during the
runtime of the RTE API.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 39
based on template version 4.8.0

All RTE APIs for a SWC are declared in the header Rte_<c>.h. APIs are implemented
either as macro or as function. When the APIs are implemented as functions, the
implementation is contained in the file Rte_<oa>.c of the OS Application to which the SWC
is mapped.

It needs to be assured that all functions that are called from within RTE code are imported
from the correct versions of the AUTOSAR, Com and OS source and header files.

The inclusion of files from these and other modules shall not re-define any identifier that is
defined in the generated RTE code, e.g. through #define macros. Exceptions are the RTE
memory section defines that can be redeclared in MemMap. However, it needs to be
checked that the mapping of the variables to the code sections works as expected.

The following code examples show the APIs with configured VFB Trace Hooks. Depending
on the RTE version, the calls to the hooks might not be generated when they are not
explicitly enabled.

6.5 BSW Implementation

The RTE is the module that glues the BSW to the AUTOSAR stack. For this, the RTE
generator generates a list of files that provide the datatypes and APIs for the BSW and that
call the schedulable entities of the BSW. A description of all generated files can be found in
the RTE Technical Reference.

From the generated files, the BSW shall only include the appropriate RTE header
SchM_<bsw>.h directly. It provides the BSW specific functionality.

The BSW implementation shall at least contain all configured schedulable entities.

The signature of the schedulable entities is

FUNC(void, <BSW>_CODE) <res>()

Schedulable entity implementations shall be surrounded by <BSW>_CODE memory
abstraction defines.

Every schedulable entity shall have a prototype in SchM_<bsw>.h that is also surrounded
by the same memory abstraction defines.

Schedulable entities in ASIL BSW should only contain calls to the following RTE APIs:

> void SchM_Enter_<bsw>_<name>()

> void SchM_Exit_<bsw>_<name>()

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 40
based on template version 4.8.0

All RTE APIs for a BSW module are declared in the header SchM_<bsw>.h. APIs are
implemented either as macro or as function. When the APIs are implemented as functions,
the implementation is contained in the file Rte_<oa>.c of the OS Application to which the
BSW is mapped.

It needs to be assured that all functions that are called from within RTE code are imported
from the correct versions of the AUTOSAR, Com and OS source and header files.

The inclusion of files from these and other modules shall not re-define any identifier that is
defined in the generated RTE code, e.g. through #define macros. Exceptions are the RTE
memory section defines that can be redeclared in MemMap. However, it needs to be
checked that the mapping of the variables to the code sections works as expected.

6.6 SWC specific RTE APIs

6.6.1 Rte_Write

6.6.1.1 Configuration Variant Intra-ECU Without IsUpdated

> source code SWC

> no support for multiple instantiation

> no indirect API

> intra-ECU communication

> receiver is connected

> no receiver triggered on data reception

> no receiver triggered on data reception error

> no transmission acknowledgement

> no rx filtering

> no data prototype mapping

> no invalidation

> is updated is not configured for the receivers

> never received is not configured for the receiver

6.6.1.2 Generated Code Intra-ECU Without IsUpdated

Rte_<c>.h defines Rte_Write as follows:

#define Rte_Write_<p>_<d> Rte_Write_<c>_<p>_<d>

When the attribute “EnableTakeAddress” is not set for the port and when the data element
can be accessed atomically by the ECU and when the data element is not an array or

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 41
based on template version 4.8.0

string type, Rte_Write_<c>_<p>_<d> is declared as macro that writes to a global RTE
variable.

define RTE_START_SEC_VAR_<oa><nocache>_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(<t>, RTE_VAR_INIT<nocache>) Rte_<ci>_<p>_<d>;

define RTE_STOP_SEC_VAR_<oa><nocache>_INIT_UNSPECIFIED

include "MemMap.h"

define Rte_Write_<c>_<p>_<d>(data) (Rte_<ci>_<p>_<d> = (data),

((Std_ReturnType)RTE_E_OK))

Otherwise, the API is implemented in Rte_<oa>.c

#define RTE_START_SEC_CODE

#include "MemMap.h"

FUNC(Std_ReturnType, RTE_CODE) Rte_Write_<c>_<p>_<d>(<t> data)

{

Std_ReturnType ret = RTE_E_OK;

 Rte_WriteHook_<c>_<p>_<d>_Start(data);

 <Lock>();

 Rte_<ci>_<p>_<d> = *(&data);

<UnLock>();

Rte_WriteHook_<c>_<p>_<d>_Return(data);

 return ret;

}

#define RTE_STOP_SEC_CODE

#include "MemMap.h"

and Rte_<c>.h only contains the prototype:

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(Std_ReturnType, RTE_CODE) Rte_Write_<c>_<p>_<d>(<t> data);

define RTE_STOP_SEC_CODE

include "MemMap.h"

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 42
based on template version 4.8.0

In both cases the global variable in Rte_<oa>.c is declared as

#define RTE_START_SEC_VAR_<oa><nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

VAR(<dt>, RTE_VAR_INIT<nocache>) Rte_<ci>_<p>_<d> = <initializer>;

#define RTE_STOP_SEC_VAR_<oa><nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

where <initializer> is the C representation of the init value that is configured for the port
data element.

For systems where the compiler does not initialize global variables, the API
Rte_InitMemory needs to do the initialization:

Rte_<ci>_<p>_<d> = <initializer>;

If the data element is of a string or array type, no direct assignments are used. Instead, the
assignment is replaced by a memcpy

<Rte_MemCpy>(Rte_<ci>_<p>_<d>, *(data), sizeof(<t>));

If the datatype can be read and written atomically, the <Lock>() and <UnLock>() calls are
omitted from the Rte_Write API.

When Rte_Write is not a macro, it needs to be assured that the macros
Rte_WriteHook_<c>_<p>_<d>_Start(data) and
Rte_WriteHook_<c>_<p>_<d>_Return(data) do not have any side effects.

6.6.1.3 Configuration Variant Intra-ECU With IsUpdated

> source code SWC

> no support for multiple instantiation

> no indirect API

> intra-ECU communication

> receiver is connected

> no receiver triggered on data reception

> no receiver triggered on data reception error

> no transmission acknowledgement

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 43
based on template version 4.8.0

> no rx filtering

> no data prototype mapping

> no invalidation

> is updated is configured for one receiver

> never received is not configured for the receiver

6.6.1.4 Generated Code Intra-ECU With IsUpdated

Rte_Write with configured IsUpdated is similar to the variant without IsUpdated. However,
in the IsUpdated case, Rte_Write is always implemented as function in Rte_<oa>.c.

/**

 * Update Flags for each Receiver with enableUpdate != 0

 ***/

define RTE_START_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

VAR(Rte_<oa>_RxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<oa>_RxUpdateFlags = {

 0

};

define RTE_STOP_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

define Rte_<oa>_RxUpdateFlagsInit() (Rte_MemClr(&Rte_<oa>_RxUpdateFlags,

sizeof(Rte_<oa>_RxUpdateFlagsType)))

#define RTE_START_SEC_CODE

#include "MemMap.h"

FUNC(Std_ReturnType, RTE_CODE) Rte_Write_<c>_<p>_<d>(<t> data)

{

 Std_ReturnType ret = RTE_E_OK;

 Rte_WriteHook_<c>_<p>_<d>_Start(data);

 <Lock>();

Rte_<ci>_<p>_<d> = *(&data);

 Rte_<oa>_RxUpdateFlags.Rte_RxUpdate_<rci>_<rp>_<rd>_Sender =

!Rte_<roa>_RxUpdateFlags.Rte_RxUpdate_<rci>_<rp>_<rd>;

 <UnLock>();

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 44
based on template version 4.8.0

 Rte_WriteHook_<c>_<p>_<d>_Return(data);

 return ret;

}

#define RTE_STOP_SEC_CODE

#include "MemMap.h"

Rte_<roa>.c declares the variable Rte_<roa>_RxUpdateFlags as follows:

define RTE_START_SEC_VAR_<roa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

VAR(Rte_<roa>_RxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<roa>_RxUpdateFlags = {

 0

};

define RTE_STOP_SEC_VAR_<roa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

define Rte_<roa>_RxUpdateFlagsInit() (Rte_MemClr(&Rte_<roa>_RxUpdateFlags,

sizeof(Rte_<roa>_RxUpdateFlagsType)))

The extern declaration for Rte_<roa>_RxUpdateFlags is declared in Rte_Type.h:

define RTE_START_SEC_VAR_<roa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(Rte_<roa>_RxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<roa>_RxUpdateFlags;

define RTE_STOP_SEC_VAR_<roa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

For systems where the compiler does not initialize global variables, the API
Rte_InitMemory needs to call Rte_<oa>_RxUpdateFlagsInit() and
Rte_<roa>_RxUpdateFlagsInit().

The Update flag types are declared in Rte_Type.h

typedef struct

{

 Rte_BitType Rte_RxUpdate_<rci>_<rp>_<rd>_Sender : 1;

} Rte_<oa>_RxUpdateFlagsType;

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 45
based on template version 4.8.0

typedef struct

{

 Rte_BitType Rte_RxUpdate_<rci>_<rp>_<rd> : 1;

} Rte_<roa>_RxUpdateFlagsType;

6.6.1.5 Configuration Variant Inter-ECU

> source code SWC

> no support for multiple instantiation

> no indirect API

> pure inter-ECU communication

> no transmission acknowledgement

> no invalidation

> no data prototype mapping

6.6.1.6 Generated Code Inter-ECU

Rte_<c>.h defines Rte_Write as follows:

#define Rte_Write_<p>_<d> Rte_Write_<c>_<p>_<d>

The API is implemented in Rte_<oa>.c

define RTE_START_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

VAR(Rte_<oa>_TxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<oa>_TxUpdateFlags = {

 0,

 0,

};

define RTE_STOP_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

define Rte_<oa>_TxUpdateFlagsInit() (Rte_MemClr(&Rte_<oa>_TxUpdateFlags,

sizeof(Rte_<oa>_TxUpdateFlagsType)))

#define RTE_START_SEC_CODE

#include "MemMap.h"

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 46
based on template version 4.8.0

FUNC(Std_ReturnType, RTE_CODE) Rte_Write_<c>_<p>_<d>(<t> data)

{

Std_ReturnType ret = RTE_E_OK;

 Rte_WriteHook_<c>_<p>_<d>_Start(data);

 <Lock>();

 Rte_<signalid> = *(&data);

 Rte_<oa>_TxUpdateFlags.Rte_TxUpdate_<c>_<p>_<d> =

RTE_COM_SENDSIGNALPROXY_SEND;

 Rte_<oa>_TxUpdateFlags.Rte_TxUpdateProxy_<c>_<p>_<d> =

!Rte_<bswoa>_TxUpdateFlags.Rte_TxUpdateProxy__<c>_<p>_<d>;

<UnLock>();

Rte_WriteHook_<c>_<p>_<d>_Return(data);

 return ret;

}

#define RTE_STOP_SEC_CODE

#include "MemMap.h"

and Rte_<c>.h only contains the prototype:

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(Std_ReturnType, RTE_CODE) Rte_Write_<c>_<p>_<d>(<t> data);

define RTE_STOP_SEC_CODE

include "MemMap.h"

The extern declaration for Rte_<oa>_TxUpdateFlags is declared in Rte_Type.h:

typedef struct

{

 Rte_BitType Rte_TxUpdate_<c>_<p>_<e> : 2;

 Rte_BitType Rte_TxUpdateProxy_<c>_<p>_<e> : 1;

} Rte_<oa>_TxUpdateFlagsType;

define RTE_START_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(Rte_<oa>_TxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<oa>_TxUpdateFlags;

define RTE_STOP_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 47
based on template version 4.8.0

For systems where the compiler does not initialize global variables, the API
Rte_InitMemory needs to call Rte_<oa>_TxUpdateFlagsInit().

In both cases the global variable in Rte_<oa>.c is declared as

#define RTE_START_SEC_VAR_<oa><nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

VAR(<dt>, RTE_VAR_INIT<nocache>) Rte_<signalid> = <initializer>;

#define RTE_STOP_SEC_VAR_<oa><nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

where <initializer> is the C representation of the init value that is configured for the port
data element.

For systems where the compiler does not initialize global variables, the API
Rte_InitMemory needs to do the initialization:

Rte_<signalid> = <initializer>;

If the data element is of a string or array type, no direct assignments are used. Instead,
the assignment is replaced by a memcpy

<Rte_MemCpy>(Rte_<signalid>, *(data), sizeof(<t>));

If the datatype can be read and written atomically, the <Lock>() and <UnLock>() calls are
omitted from the Rte_Write API.

When Rte_Write is not a macro, it needs to be assured that the macros
Rte_WriteHook_<c>_<p>_<d>_Start(data) and
Rte_WriteHook_<c>_<p>_<d>_Return(data) do not have any side effects.

6.6.2 Rte_Read

6.6.2.1 Configuration Variant Without IsUpdated

> source code SWC

> no support for multiple instantiation

> no indirect API

> alive timeout is not configured

> invalidation is not configured

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 48
based on template version 4.8.0

> is updated is not configured

> never received is not configured

> no data prototype mapping

> sender is connected

> intra-ECU or inter-ECU communication

6.6.2.2 Generated Code Without IsUpdated

Rte_<c>.h defines Rte_Read as follows:

#define Rte_Read_<p>_<d> Rte_Read_<c>_<p>_<d>

When the attribute “EnableTakeAddress” is not set for the port and when the data element
can be accessed atomically by the ECU, Rte_Read_<c>_<p>_<d> is declared as macro
that reads from a global RTE variable.

define RTE_START_SEC_VAR_<soa><nocache>_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(<t>, RTE_VAR_INIT<nocache>) Rte_<sci>_<sp>_<sd> ;

define RTE_STOP_SEC_VAR_<soa><nocache>_INIT_UNSPECIFIED

include "MemMap.h"

define Rte_Read_<c>_<p>_<d>(data) (*(data) = Rte_<sci>_<sp>_<sd> ,

((Std_ReturnType)RTE_E_OK))

Otherwise, the API is implemented in Rte_<oa>.c

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(Std_ReturnType, RTE_CODE) Rte_Read_<c>_<p>_<d>(<tp> data)

{

 Std_ReturnType ret = RTE_E_OK;

 Rte_ReadHook_<c>_<p>_<d>_Start(data);

 <Lock>();

 *(data) = Rte_<sci>_<sp>_<sd> ;

 <UnLock>();

 Rte_ReadHook_<c>_<p>_<d>_Return(data);

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 49
based on template version 4.8.0

 return ret;

}

#define RTE_STOP_SEC_CODE

#include "MemMap.h"

and Rte_<c>.h only contains the prototype:

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(Std_ReturnType, RTE_CODE) Rte_Read_<c>_<p>_<d>(<tp> data);

define RTE_STOP_SEC_CODE

include "MemMap.h"

In both cases the global variable in Rte_<soa>.c is declared as

#define RTE_START_SEC_VAR_<soa><nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

VAR(<dt>, RTE_VAR_INIT<nocache>) Rte_<sci>_<sp>_<sd> = <initializer>;

#define RTE_STOP_SEC_VAR_<soa><nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

where <initializer> is the C representation of the init value that is configured for the sender
port data element.

For systems where the compiler does not initialize global variables, the API
Rte_InitMemory needs to do the initialization:

Rte_<sci>_<sp>_<sd> = <initializer>;

If the data element is a of a string or array type, no direct assignments are used. Instead,
the assignment is replaced by a memcpy

<Rte_MemCpy>(*(data), Rte_<sci>_<sp>_<sd> , sizeof(<t>));

The extern declaration for the global variable is contained in Rte_Type.h:

#define RTE_START_SEC_VAR_<soa><nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

extern VAR(<dt>, RTE_VAR_INIT<nocache>) Rte_<sci>_<sp>_<sd>;

#define RTE_STOP_SEC_VAR_<soa><nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 50
based on template version 4.8.0

If the datatype can be read and written atomically, the <Lock>() and <UnLock>() calls are
omitted from the Rte_Read API.

When Rte_Read is not a macro, it needs to be assured that the macros
Rte_ReadHook_<c>_<p>_<d>_Start(data) and
Rte_ReadHook_<c>_<p>_<d>_Return(data) do not have any side effects.

When Rte_Read reads data from a component or BSW with lower safety level, sanity
checks have to be applied to the input data.

6.6.2.3 Configuration Variant With IsUpdated

> source code SWC

> no support for multiple instantiation

> no indirect API

> alive timeout is not configured

> invalidation is not configured

> no data prototype mapping

> is updated is configured

> never received is not configured

> sender is connected

> intra-ECU or inter-ECU communication

6.6.2.4 Generated Code With IsUpdated

Rte_Read with configured IsUpdated is similar to the variant without IsUpdated. However,
in the IsUpdated case, Rte_Read is always implemented as function in Rte_<oa>.c.

/**

 * Update Flags for each Receiver with enableUpdate != 0

 ***/

define RTE_START_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

VAR(Rte_<oa>_RxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<oa>_RxUpdateFlags = {

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 51
based on template version 4.8.0

 0

};

define RTE_STOP_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

define Rte_<oa>_RxUpdateFlagsInit() (Rte_MemClr(&Rte_<oa>_RxUpdateFlags,

sizeof(Rte_<oa>_RxUpdateFlagsType)))

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(Std_ReturnType, RTE_CODE) Rte_Read_<c>_<p>_<d>(<tp> data)

{

 Std_ReturnType ret = RTE_E_OK;

 Rte_ReadHook_<c>_<p>_<d>_Start(data);

 <Lock>();

*(data) = Rte_<sci>_<sp>_<sd> ;

 Rte_<oa>_RxUpdateFlags.Rte_RxUpdate_<ci>_<p>_<d> =

Rte_<soa>_RxUpdateFlags.Rte_RxUpdate_<ci>_<p>_<d>_Sender;

 <UnLock>();

 Rte_ReadHook_<c>_<p>_<d>_Return(data);

 return ret;

}

#define RTE_STOP_SEC_CODE

#include "MemMap.h"

The variable Rte_<soa>_RxUpdateFlags is declared in Rte_<soa>.c as:

define RTE_START_SEC_VAR_<soa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

VAR(Rte_<soa>_RxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<soa>_RxUpdateFlags = {

 0

};

define RTE_STOP_SEC_VAR_<soa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 52
based on template version 4.8.0

define Rte_<soa>_RxUpdateFlagsInit() (Rte_MemClr(&Rte_<soa>_RxUpdateFlags,

sizeof(Rte_<soa>_RxUpdateFlagsType)))

For systems where the compiler does not initialize global variables, the API
Rte_InitMemory needs to call Rte_<oa>_RxUpdateFlagsInit() and
Rte_<soa>_RxUpdateFlagsInit().

The Update flags are declared in Rte_Type.h

typedef struct

{

 Rte_BitType Rte_RxUpdate_<rci>_<rp>_<rd> : 1;

} Rte_<oa>_RxUpdateFlagsType;

typedef struct

{

 Rte_BitType Rte_RxUpdate_<rci>_<rp>_<rd>_Sender : 1;

} Rte_<soa>_RxUpdateFlagsType;

define RTE_START_SEC_VAR_<soa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(Rte_<soa>_RxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<soa>_RxUpdateFlags;

define RTE_STOP_SEC_VAR_<soa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

define RTE_START_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(Rte_<oa>_RxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<oa>_RxUpdateFlags;

define RTE_STOP_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

Please note that in case of inter-ECU sender/receiver communication <soa> is the BSW
OS Application.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 53
based on template version 4.8.0

6.6.3 Rte_IsUpdated

6.6.3.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

> no indirect API

> alive timeout is not configured

> invalidation is not configured

> is updated is configured

> never received is not configured

> sender is connected

> intra-ECU or inter-ECU communication

6.6.3.2 Generated Code

Rte_<c>.h defines Rte_IsUpdated as follows:

define Rte_IsUpdated_<p>_<d> Rte_IsUpdated_<c>_<p>_<d>

define Rte_IsUpdated_<c>_<p>_<d>()

((Rte_<oa>_RxUpdateFlags.Rte_RxUpdate_<rci>_<rc>_<rd> ==

Rte_<soa>_RxUpdateFlags.Rte_RxUpdate_<rci>_<rp>_<rd>_Sender) ? FALSE : TRUE)

The Update flags are declared in Rte_Type.h

/**

 * LOCAL DATA TYPES AND STRUCTURES

 ***/

typedef unsigned int Rte_BitType;

typedef struct

{

 Rte_BitType Rte_RxUpdate_<rci>_<rp>_<rd> : 1;

} Rte_<oa>_RxUpdateFlagsType;

typedef struct

{

 Rte_BitType Rte_RxUpdate_<rci>_<rp>_<rd>_Sender :1;

} Rte_<soa>_RxUpdateFlagsType;

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 54
based on template version 4.8.0

define RTE_START_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(Rte_<oa>_RxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<oa>_RxUpdateFlags;

define RTE_STOP_SEC_VAR_<oa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

define RTE_START_SEC_VAR_<soa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(Rte_<soa>_RxUpdateFlagsType, RTE_VAR_ZERO_INIT<nocache>)

Rte_<soa>_RxUpdateFlags;

define RTE_STOP_SEC_VAR_<soa><nocache>_ZERO_INIT_UNSPECIFIED

include "MemMap.h"

Variable initialization happens in Rte.c as described for the Rte_Read and Rte_Write APIs
(see 6.6.1.4 and 6.6.2.4).

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 55
based on template version 4.8.0

6.6.4 Rte_IrvWrite

6.6.4.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

6.6.4.2 Generated Code

When the inter runnables variable can be accessed atomically by the ECU
Rte_IrvWrite_<re>_<name> is declared as macro that writes to a global RTE variable.

define RTE_START_SEC_VAR_<oa>_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(<t>, RTE_VAR_INIT) Rte_Irv_<ci>_<name>;

define RTE_STOP_SEC_VAR_<oa>_INIT_UNSPECIFIED

include "MemMap.h"

define Rte_IrvWrite_<re>_<name>(data) (Rte_Irv_<ci>_<name> = (data))

Otherwise, the API is implemented in Rte_<oa>.c

#define RTE_START_SEC_CODE

#include "MemMap.h"

FUNC(void, RTE_CODE) Rte_IrvWrite_<c>_<re>_<name>(<t> data)

{

 Rte_IrvWriteHook_<c>_<re>_<name>_Start(data);

 <Lock>();

 Rte_Irv_<ci>_<name> = data;

<UnLock>();

Rte_IrvWriteHook_<c>_<re>_<name>_Return(data);

}

#define RTE_STOP_SEC_CODE

#include "MemMap.h"

and Rte_<c>.h only contains a define to the function:

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 56
based on template version 4.8.0

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(void, RTE_CODE) Rte_IrvWrite_<c>_<re>_<name>(<t> data);

define RTE_STOP_SEC_CODE

include "MemMap.h"

#define Rte_IrvWrite_<re>_<name> Rte_IrvWrite_<c>_<re>_<name>

In both cases the global variable in Rte_<oa>.c is declared as

#define RTE_START_SEC_VAR_<oa>_INIT_UNSPECIFIED

#include "MemMap.h"

VAR(<dt>, RTE_VAR_INIT) Rte_Irv_<ci>_<name> = <initializer>;

#define RTE_STOP_SEC_VAR_<oa>_INIT_UNSPECIFIED

#include "MemMap.h"

where <initializer> is the C representation of the init value that is configured for the inter-
runnable variable.

For systems where the compiler does not initialize global variables, the API
Rte_InitMemory needs to do the initialization:
Rte_Irv_<ci>_<name> = <initializer>;

If the datatype can be read and written atomically, the <LockInterupts>() and <UnLock>()
calls are omitted from the Rte_IrvWrite API.

When Rte_IrvWrite is not a macro, it needs to be assured that the macros
Rte_IrvWriteHook_<c>_<re>_<name>_Start(data) and
Rte_IrvWriteHook_<c>_<re>_<name>_Return(data) do not have any side effects.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 57
based on template version 4.8.0

6.6.5 Rte_IrvRead

6.6.5.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

6.6.5.2 Generated Code

When the inter runnables variable can be accessed atomically by the ECU
Rte_IrvRead_<re>_<name> is declared as macro that reads a global RTE variable.

define RTE_START_SEC_VAR_<oa>_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(<t>, RTE_VAR_INIT) Rte_Irv_<ci>_<name>;

define RTE_STOP_SEC_VAR_<oa>_INIT_UNSPECIFIED

include "MemMap.h"

define Rte_IrvRead_<re>_<name>(data) Rte_Irv_<ci>_<name>

Otherwise, the API is implemented in Rte_<oa>.c

#define RTE_START_SEC_CODE

#include "MemMap.h"

FUNC(<t>, RTE_CODE) Rte_IrvRead_<c>_<re>_<name>(void)

{

<t> irvValue;

Rte_IrvReadHook_<c>_<re>_<name>_Start();

 <Lock>();

 irvValue = Rte_Irv_<ci>_<name>;

<UnLock>();

Rte_IrvReadHook_<c>_<re>_<name>_Return();

return irvValue;

}

#define RTE_STOP_SEC_CODE

#include "MemMap.h"

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 58
based on template version 4.8.0

and Rte_<c>.h only contains a define to the function:

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(<t>, RTE_CODE) Rte_IrvRead_<c>_<re>_<name>(void);

define RTE_STOP_SEC_CODE

include "MemMap.h"

#define Rte_IrvRead_<re>_<name> Rte_IrvRead_<c>_<re>_<name>

In both cases the global variable in Rte_<oa>.c is declared as

#define RTE_START_SEC_VAR_<oa>_INIT_UNSPECIFIED

#include "MemMap.h"

VAR(<dt>, RTE_VAR_INIT) Rte_Irv_<ci>_<name> = <initializer>;

#define RTE_STOP_SEC_VAR_<oa>_INIT_UNSPECIFIED

#include "MemMap.h"

where <initializer> is the C representation of the init value that is configured for the inter-
runnable variable.

For systems where the compiler does not initialize global variables, the API
Rte_InitMemory needs to do the initialization:

Rte_Irv_<ci>_<name> = <initializer>;

If the datatype can be read and written atomically, the <Lock>() and <UnLock>() calls are
omitted from the Rte_IrvRead API.

When Rte_IrvRead is not a macro, it needs to be assured that the macros
Rte_IrvReadHook_<c>_<re>_<name>_Start() and
Rte_IrvReadHook_<c>_<re>_<name>_Return() do not have any side effects.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 59
based on template version 4.8.0

6.6.6 Rte_Pim

6.6.6.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

6.6.6.2 Generated Code

The API Rte_Pim is declared as access to a global RTE variable in Rte_<c>.h

define RTE_START_SEC_VAR_DEFAULT_RTE_<oa>_PIM_GROUP_UNSPECIFIED

include "MemMap.h"

extern VAR(<t>, RTE_VAR_DEFAULT_RTE_<oa>_PIM_GROUP) Rte_<ci>_<name>;

define RTE_STOP_SEC_VAR_DEFAULT_RTE_<oa>_PIM_GROUP_UNSPECIFIED

include "MemMap.h"

define Rte_Pim_<name>() \\

(&Rte_<ci>_<name>)

Depending on the configuration of the memory section (see RTE Technical Reference) the
DEFAULT_RTE_<oa>_PIM_GROUP string is replaced by the configured group name.

The Rte_<c>_<name> variable is declared in Rte_<oa>.c:

define RTE_START_SEC_VAR_DEFAULT_RTE_<oa>_PIM_GROUP_UNSPECIFIED

include "MemMap.h"

VAR(<t>, RTE_VAR_DEFAULT_RTE_<d>_PIM_GROUP) Rte_<ci>_<name>;

define RTE_STOP_SEC_VAR_DEFAULT_RTE_<oa>_PIM_GROUP_UNSPECIFIED

include "MemMap.h"

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 60
based on template version 4.8.0

6.6.7 Rte_CData

6.6.7.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

> no online calibration

6.6.7.2 Generated Code

The API Rte_CData is declared as access to a global RTE variable in Rte_<c>.h

define RTE_START_SEC_CONST_DEFAULT_RTE_CDATA_GROUP_UNSPECIFIED

include "MemMap.h"

extern CONST(<t>, RTE_CONST_DEFAULT_RTE_CDATA_GROUP) Rte_<c>_<name>;

define RTE_STOP_SEC_CONST_DEFAULT_RTE_CDATA_GROUP_UNSPECIFIED

include "MemMap.h"

define Rte_CData_<name>() (Rte_<c>_<name>)

Depending on the configuration of the memory section (see RTE Technical Reference) the
DEFAULT_RTE_CDATA_GROUP string is replaced by the configured group name.
The Rte_<c>_<name> variable is declared in Rte_<oa>.c:

#define RTE_START_SEC_CONST_DEFAULT_RTE_CDATA_GROUP_UNSPECIFIED

#include "MemMap.h"

CONST(<t>, RTE_CONST_DEFAULT_RTE_CDATA_GROUP) Rte_<c>_<name> = <initializer>;

#define RTE_STOP_SEC_CONST_DEFAULT_RTE_CDATA_GROUP_UNSPECIFIED

#include "MemMap.h"

where <initializer> is the C representation of the init value that is configured for the
calibration parameter = <initializer> is omitted when the calibration parameter does not
have an init value.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 61
based on template version 4.8.0

6.6.8 Rte_Prm

6.6.8.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

> no indirect API

> no online calibration

> calibration port is connected

6.6.8.2 Generated Code

When the attribute “EnableTakeAddress” is not set for the calibration port, the API
Rte_Prm is declared as access to a global RTE variable in Rte_<c>.h

define RTE_START_SEC_CONST_DEFAULT_RTE_CALPRM_GROUP_UNSPECIFIED

include "MemMap.h"

extern CONST(<t>, RTE_CONST_DEFAULT_RTE_CALPRM_GROUP) Rte_<sc>_<sp>_<sd>;

define RTE_STOP_SEC_CONST_DEFAULT_RTE_CALPRM_GROUP_UNSPECIFIED

include "MemMap.h"

define Rte_Prm_<p>_<d>() (Rte_<sc>_<sp>_<sd>)

Depending on the configuration of the memory section (see RTE Technical Reference) the
DEFAULT_RTE_CALPRM_GROUP string is replaced by the configured group name.

When “EnableTakeAddress” is set for the calibration port Rte_<c>.h maps the API to a
function in Rte_<oa>.c

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(<t>, RTE_CODE) Rte_Prm_<c>_<p>_<d>(void);

define RTE_STOP_SEC_CODE

include "MemMap.h"

define Rte_Prm_<p>_<d> Rte_Prm_<c>_<p>_<d>

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 62
based on template version 4.8.0

Rte_<oa>.c then contains:

FUNC(<t>, RTE_CODE) Rte_Prm_<c>_<p>_<d>(void)

{

 return Rte_<sc>_<sp>_<sd>;

}

In both cases the Rte_<sc>_<sp>_<sd> variable is declared in Rte.c:

#define RTE_START_SEC_CONST_DEFAULT_RTE_CALPRM_GROUP_UNSPECIFIED

#include "MemMap.h"

CONST(<t>, RTE_CONST_DEFAULT_RTE_CALPRM_GROUP) Rte_<sc>_<sp>_<sd> =

<initializer>;

#define RTE_STOP_SEC_CONST_DEFAULT_RTE_CALPRM_GROUP_UNSPECIFIED

#include "MemMap.h"

where <initializer> is the C representation of the init value that is configured for the
calibration parameter. No initializer is used when the calibration parameter does not have
an init value.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 63
based on template version 4.8.0

6.6.9 Rte_Mode

6.6.9.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

> no indirect API

> mode port is connected

6.6.9.2 Generated Code

The API Rte_Mode is declared as access to a global RTE variable in Rte_<c>.h

When the attribute “EnableTakeAddress” is not set for the mode port, the API is
implemented as macro.

define RTE_START_SEC_VAR<nocache>_INIT_UNSPECIFIED

include "MemMap.h"

extern VAR(<t>, RTE_VAR_INIT<nocache>) Rte_ModeMachine_<sci>_<sp>_<sd>;

define RTE_STOP_SEC_VAR<nocache>_INIT_UNSPECIFIED

include "MemMap.h"

define Rte_Mode_<p>_<d>() Rte_ModeMachine_<sci>_<sp>_<sd>

Otherwise the API is defined to a function

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(<t>, RTE_CODE) Rte_Mode_<c>_<p>_<d>(void);

define RTE_STOP_SEC_CODE

include "MemMap.h"

define Rte_Mode_<p>_<d> Rte_Mode_<c>_<p>_<d>

that is implemented in Rte_<oa>.c

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 64
based on template version 4.8.0

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(<t>, RTE_CODE) Rte_Mode_<c>_<p>_<d>(void)

{

 return Rte_ModeMachine_<sci>_<sp>_<sd>;

}

define RTE_STOP_SEC_CODE

include "MemMap.h"

In both cases the global variable in Rte_<soa>.c is declared as

#define RTE_START_SEC_VAR<nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

VAR(<t>, RTE_VAR_INIT<nocache>) Rte_ModeMachine_<sci>_<sp>_<sd> = <mode>;

#define RTE_STOP_SEC_VAR<nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

where <mode> is the mode mode define for the configured init mode.

The extern declaration is contained in Rte_Type.h:

#define RTE_START_SEC_VAR<nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

extern VAR(<t>, RTE_VAR_INIT<nocache>) Rte_ModeMachine_<sci>_<sp>_<sd>;

#define RTE_STOP_SEC_VAR<nocache>_INIT_UNSPECIFIED

#include "MemMap.h"

For systems where the compiler does not initialize global variables, the API
Rte_InitMemory needs to do the initialization:

Rte_ModeMachine_<sci>_<sp>_<sd> = <mode>;

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 65
based on template version 4.8.0

6.6.10 Rte_Call

6.6.10.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

> no indirect API

> Synchronous call

> Direct call:

> server runnable is not mapped

> server runnable is mapped to the same task

> server runnable has CanBeInvokedConcurrently set to true

6.6.10.2 Generated Code

When the server runnable has a return code and no port defined arguments, the API
Rte_Call is declared in Rte_<c>.h as macro:

define <c>_START_SEC_CODE

include "MemMap.h"

FUNC(Std_ReturnType, <c>_CODE) <sres>(<arglist>);

define <c>_STOP_SEC_CODE

include "MemMap.h"

define Rte_Call_<p>_<o> <sres>

When the server runnable does not have a return code or if there are port defined
arguments and “EnableTakeAddress” is not set Rte_Call is declared as:

define <c>_START_SEC_CODE

include "MemMap.h"

FUNC(void, <c>_CODE) <sres>(<parglist><arglist>);

define <c>_STOP_SEC_CODE

include "MemMap.h"

define Rte_Call_<p>_<o>(<arglist>) (<sres>(<parglist><arglist),

((Std_ReturnType)RTE_E_OK))

When the server runnable does not have a return code or if there are port defined
arguments and “EnableTakeAddress” is set, Rte_Call is declared as:

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 66
based on template version 4.8.0

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(Std_ReturnType, RTE_CODE) Rte_Call_<c>_<p>_<o>(<parglist><arglist>);

define RTE_STOP_SEC_CODE

include "MemMap.h"

define Rte_Call_<p>_<o> Rte_Call_<c>_<p>_<o>

and Rte_<oa>.c contains the code

define RTE_START_SEC_CODE

include "MemMap.h"

FUNC(Std_ReturnType, RTE_CODE) Rte_Call_<c>_<p>_<o>(<parglist><arglist>)

{

 Std_ReturnType ret = RTE_E_OK;

 Rte_CallHook_<c>_<p>_<o>_Start(<parglist><arglist>);

 Rte_Runnable_<sc>_<sre>_Start(<parglist><arglist>);

 <sres>(<arglist>);

 Rte_Runnable_<sc>_<sre>_Return(<parglist><arglist>);

 Rte_CallHook_<c>_<p>_<o>_Return(<parglist><arglist>);

 return ret;

}

define RTE_STOP_SEC_CODE

include "MemMap.h"

The return value of the Rte_Call API needs to be evaluated when the server operation has
configured application return codes.

When Rte_Call is not a macro, it needs to be assured that the Rte_CallHook_ and
Rte_Runnable_ macros do not have any side effects.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 67
based on template version 4.8.0

6.6.11 Rte_Enter

6.6.11.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

> Implementation method is set to OS interrupt blocking

6.6.11.2 Generated Code

The API Rte_Enter is declared in Rte_<c>.h as

define Rte_Enter_<name>() \

 { \

 Rte_EnterHook_<c>_<name>_Start(); \

 SuspendOSInterrupts(); \

 Rte_EnterHook_<c>_<name>_Return(); \

}

It needs to be assured that the macros Rte_EnterHook_<c>_<name>_Start() and
Rte_EnterHook_<c>_<name>_Return() do not have any side effects.

It has to be assured that no included non-OS header or SWC code redefines the
SuspendOSInterrupts() and ResumeOSInterrupts() calls.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 68
based on template version 4.8.0

6.6.12 Rte_Exit

6.6.12.1 Configuration Variant

> source code SWC

> no support for multiple instantiation

> Implementation method is set to OS interrupt blocking

6.6.12.2 Generated Code

The API Rte_Exit is declared in Rte_<c>.h as

define Rte_Exit_<name>() \

 { \

 Rte_ExitHook_<c>_<name>_Start(); \

 ResumeOSInterrupts(); \

 Rte_ExitHook_<c>_<name>_Return(); \

}

It has to be assured that no included non-OS header or SWC code redefines the
SuspendOSInterrupts() and ResumeOSInterrupts() calls.

It needs to be assured that the macros Rte_ExitHook_<c>_<name>_Start() and
Rte_ExitHook_<c>_<name>_Return() are do not have any side effects.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 69
based on template version 4.8.0

6.7 BSW specifc RTE APIs

6.7.1 SchM_Enter

6.7.1.1 Configuration Variant

> source code BSW

> Implementation method is set to All or OS interrupt blocking

6.7.1.2 Generated Code

The API SchM_Enter is declared in SchM_<bsw>.h as

define SchM_Enter_<bsw>_<name>() \

 { \

 SuspendAllInterrupts(); \

}

for ImplementationMethod All Interrupt Blocking. Otherwise SuspendOSInterrupts() is
called.

It has to be assured that no included non-OS header or BSW code redefines the
SuspendAllInterrupts()/SuspendOSInterrupts() and
ResumeAllInterrupts()/ResumeOSInterupts() calls.

6.7.2 SchM_Exit

6.7.2.1 Configuration Variant

> source code BSW

> Implementation method is set to All or OS interrupt blocking

6.7.2.2 Generated Code

The API SchM_Exit is declared in SchM_<bsw>.h as

define SchM_Exit_<bsw>_<name>() \

 { \

 ResumeAllInterrupts(); \

}

for ImplementationMethod All Interrupt Blocking. Otherwise ResumeOSInterrupts() is
called.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 70
based on template version 4.8.0

It has to be assured that no included non-OS header or BSW code redefines the
SuspendAllInterrupts()/SuspendOSInterrupts() and
ResumeAllInterrupts()/ResumeOSInterupts() calls.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 71
based on template version 4.8.0

6.8 RTE Lifecycle APIs

6.8.1 Rte_Start

Rte_Start is not called from the ASIL context.

6.8.2 Rte_Stop

Rte_Stop is not called from the ASIL context.

6.8.3 Rte_InitMemory

Rte_InitMemory needs to be called before the OS sets up the memory protection when the
compiler does not initialize global variables. The method itself and the method it calls need
to do all initialization for the APIs that are listed in chapter 6.6.

6.9 RTE Internal Functions

6.9.1 Rte_MemCpy

Rte_MemCpy is called by RTE code that is called from the ASIL SWCs in order to copy
data from the memory location “source” to the memory location „destination“. When
Rte_MemCpy is called from the ASIL SWCs it needs to be checked that the parameter
num which specifies the number of bytes that shall be copied is of type uint16 and that the
memory regions “destination” and “source” contain num bytes. Moreover destination needs
to be writable. For larger data sizes, the generator uses a method Rte_MemCpy32 that
copies in blocks of 4 byte when source and destination are aligned accordingly.

FUNC(void, RTE_CODE) Rte_MemCpy(P2VAR(void, AUTOMATIC, RTE_APPL_VAR)

destination, P2CONST(void, AUTOMATIC, RTE_APPL_DATA) source, uint16_least num)

FUNC(void, RTE_CODE) Rte_MemCpy32(P2VAR(void, AUTOMATIC, RTE_APPL_VAR)

destination, P2CONST(void, AUTOMATIC, RTE_APPL_DATA) source, uint16_least num)

The functionality of Rte_MemCpy and Rte_MemCpy32 needs to be checked.
Rte_MemCpy and Rte_MemCpy32 must not read and write outside the specified memory
regions and the alignment requirements of the target platform need to be fulfilled.

6.9.2 Rte_MemClr

Rte_MemClr is not called from the ASIL SWCs. It is used for the initialization of global
variables with zeros within Rte.c and Rte_<oa>.c.

STATIC FUNC(void, RTE_CODE) Rte_MemClr(P2VAR(void, AUTOMATIC, RTE_VAR_NOINIT)

ptr, uint16_least num);

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 72
based on template version 4.8.0

It has to be checked, that the first parameter is a pointer to a writable variable and that the
second parameter is the length of the variable. Rte_MemClr is not allowed to write outside
the specified memory region.

6.10 RTE Tasks

It needs to be checked that Rte_<oa>.c contains the implementation of all RTE tasks that
are assigned to ASIL OS Applications:

TASK(<name>)

{

 Rte_Task_Dispatch(<name>);

 /* call runnable */

 Rte_Runnable_<c>_<re>_Start();

 <res>();

 Rte_Runnable_<c>_<re>_Return();

 (void)TerminateTask();

}

It needs to be checked that the trace hooks

> Rte_Task_Dispatch

> Rte_Runnable_<c>_<re>_Start

> Rte_Runnable_<c>_<re>_Return

do not have any side effects.
The task body is only allowed to contain calls to runnables and schedulable entities that
are mapped to the task in the configuration and calls to TerminateTask. The call to
TerminateTask needs to be the last operation in the task and it always needs to be done.

It has to be assured that no included non-OS header or RTE code redefines the TASK()
and TerminateTask() calls.

The name within the TASK call needs to be the name of the configured OS task.

For schedulable entities, the calls to the hooks are omitted by default.

6.11 Verification of OS Configuration

The integrator is responsible for correctly configuring the OS.

It needs to be checked that the OS contains no trusted OS Applications that do not have
the highest ASIL.

It needs to be checked that the OS contains no tasks that are assigned to an ASIL OS
Application and that are not implemented with the given ASIL.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 73
based on template version 4.8.0

6.12 Verification of Memory Mapping Configuration

It needs to be verified that all variables Rte_<sci>_<p>_<d> of sender port data elements,
Rte_<oa>_RxUpdateFlags, Rte_Irv_<ci>_<name> of inter-runnable variables and
Rte_<ci>_<name> of per-instance memories from ASIL SWCs are mapped to memory
sections of the SWC’s OS Application so that they are protected from writes outside this
OS Application.

When the variables are assigned to different sections or when other RTE variables are
assigned to the section, memory protection faults might occur.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 74
based on template version 4.8.0

7 Safety Lifecycle Tailoring

The development of the MICROSAR RTE started as Safety Element out of context at the
software unit level.

The unit design is based on the requirements of the AUTOSAR RTE specification [1].

Based on the requirements and the RTE design a set of test cases with typical
configurations were derived. The RTE was generated for the test cases and compiled with
SWC stubs. Finally, the code was runtime tested on different target platforms and a MISRA
analysis was performed.

During the development of the MICROSAR RTE, assumptions regarding the architecture
and the safety requirements were made. The integrator is responsible for creating a
complete architecture design and for specifying the software safety requirements. He then
needs to verify the assumptions that are listed within this document.

As the generated RTE code heavily depends on the input configuration, it is also the
responsibility of the integrator to integrate and test the generated RTE code.

Furthermore, it needs to be verified that the generated code fulfils the safety requirements
of the target system.

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 75
based on template version 4.8.0

8 Glossary and Abbreviations

8.1 Glossary

Term Description

DaVinci DEV DaVinci Developer: The SWC and RTE Configuration Editor.

DaVinci CFG DaVinci Configurator: The BSW and RTE Configuration Editor.

E2E PW E2E Protection Wrapper: Wrapper Functions to access the E2E Library

Table 8-1 Glossary

8.2 Abbreviations

Abbreviation Description

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

BSW Basis Software

E2E AUTOSAR End-to-End Communication Protection Library

ECU Electronic Control Unit

H&R Hazard and Risk Analysis

HIS Hersteller Initiative Software

ISO International Organization for Standardization

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

MPU Memory Protection Unit (realized in hardware by the processor)

RTE Runtime Environment

SEooC Safety Element out of Context: a safety-related element which is not
developed for a specific item

SWC Software Component

OS Operating System

OS Application An OS Application is a set of tasks and ISRs with a partial common MPU
setting

TCL Tool Qualification Level

QM Quality Management (used for software parts developed following only a
standard quality management process)

Table 8-2 Abbreviations

Safety Guide MICROSAR RTE

© 2016 Vector Informatik GmbH Version 4.12 76
based on template version 4.8.0

9 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Purpose
	2 Assumptions on the scope of the MICROSAR RTE
	2.1 MICROSAR RTE overview
	2.2 Standards and Legal requirements
	2.3 Functions of the MICROSAR RTE
	2.4 Operating conditions
	2.5 Assumptions

	3 Assumptions on the safety goals of the MICROSAR RTE
	4 Safety concept of the MICROSAR RTE
	4.1 Functional concept
	4.2 Safe state and degradation concept
	4.3 Fault tolerance and diagnostics concept

	5 Integration of the MICROSAR RTE in a new particular context
	5.1 Assumptions
	5.2 RTE Configuration
	5.3 RTE Generation

	6 Qualification of generated RTE Code
	6.1 Introduction
	6.2 Compiler and Memory Abstraction
	6.3 DataTypes
	6.3.1 Imported Types
	6.3.2 Application Types Generated by the RTE
	6.3.3 Handling of Array and String Data Types
	6.3.4 Datatype specific handling of Interrupt Locks and Spinlocks

	6.4 SWC Implementation
	6.5 BSW Implementation
	6.6 SWC specific RTE APIs
	6.6.1 Rte_Write
	6.6.1.1 Configuration Variant Intra-ECU Without IsUpdated
	6.6.1.2 Generated Code Intra-ECU Without IsUpdated
	6.6.1.3 Configuration Variant Intra-ECU With IsUpdated
	6.6.1.4 Generated Code Intra-ECU With IsUpdated

	6.6.2 Rte_Read
	6.6.2.1 Configuration Variant Without IsUpdated
	6.6.2.2 Generated Code Without IsUpdated
	6.6.2.3 Configuration Variant With IsUpdated
	6.6.2.4 Generated Code With IsUpdated

	6.6.3 Rte_IsUpdated
	6.6.3.1 Configuration Variant
	6.6.3.2 Generated Code

	6.6.4 Rte_IrvWrite
	6.6.4.1 Configuration Variant
	6.6.4.2 Generated Code

	6.6.5 Rte_IrvRead
	6.6.5.1 Configuration Variant
	6.6.5.2 Generated Code

	6.6.6 Rte_Pim
	6.6.6.1 Configuration Variant
	6.6.6.2 Generated Code

	6.6.7 Rte_CData
	6.6.7.1 Configuration Variant
	6.6.7.2 Generated Code

	6.6.8 Rte_Prm
	6.6.8.1 Configuration Variant
	6.6.8.2 Generated Code

	6.6.9 Rte_Mode
	6.6.9.1 Configuration Variant
	6.6.9.2 Generated Code

	6.6.10 Rte_Call
	6.6.10.1 Configuration Variant
	6.6.10.2 Generated Code

	6.6.11 Rte_Enter
	6.6.11.1 Configuration Variant
	6.6.11.2 Generated Code

	6.6.12 Rte_Exit
	6.6.12.1 Configuration Variant
	6.6.12.2 Generated Code

	6.7 BSW specifc RTE APIs
	6.7.1 SchM_Enter
	6.7.1.1 Configuration Variant
	6.7.1.2 Generated Code

	6.7.2 SchM_Exit
	6.7.2.1 Configuration Variant
	6.7.2.2 Generated Code

	6.8 RTE Lifecycle APIs
	6.8.1 Rte_Start
	6.8.2 Rte_Stop
	6.8.3 Rte_InitMemory

	6.9 RTE Internal Functions
	6.9.1 Rte_MemCpy
	6.9.2 Rte_MemClr

	6.10 RTE Tasks
	6.11 Verification of OS Configuration
	6.12 Verification of Memory Mapping Configuration

	7 Safety Lifecycle Tailoring
	8 Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9 Contact

