
Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

1 / 164

CANdesc

Technical Reference

Version 3.07.00

Authors Oliver Garnatz, Mishel Shishmanyan, Stefan Hübner,
Matthias Heil, Katrin Thurow, Patrick Rieder

Status Released

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

2 / 164

1 History

Author Date Version Remarks

Oliver Garnatz 2003-11-12 2.00.00 Splitting into separate documents
and general revision

Oliver Garnatz 2004-01-13 2.00.01 Added chapter ‘Application interface
flow’

Updated format template

Mishel Shishmanyan 2004-03-09 2.01.00 New application callback convention
(from CANdesc 2.09.00)

Mishel Shishmanyan 2004-03-29 2.02.00 New APIs:

- DescGetActivityState (from
CANdesc 2.10.00)

- DescSchedulerTask() (from
CANdesc 2.09.00)

Mishel Shishmanyan 2004-04-26 2.03.00 Added more information and
limitations about the ring-buffer
mechanism (12.6.9 “Ring Buffer
Mechanism”)

New feature:

- Support for generic user
service (from CANdesc
2.11.00)

- Force CANdesc to send
RCR-RP response (from
CANdesc 2.11.00)

Stefan Hübner 2004-07-16 2.03.01 Editorial revision

Oliver Garnatz 2004-08-12 2.04.00 Added chapter 4.2
ReadDataByIdentifier (SID $22)
within the Single- and the Multiple
PID mode is described

Oliver Garnatz 2004-10-08 2.05.00 ESCAN0000982: Description of
MainHandler structure is not
readable

ROE transmission unit is described
in detail

Stefan Hübner

Oliver Garnatz

2004-10-15 2.06.00 Some additional information are
provided

Peter Herrmann

Klaus Emmert

2005-06-22 2.07.00 Added: Service $2C description.

Added: Warning Text added

Mishel Shishmanyan

Oliver Garnatz

2005-08.03 2.08.00 API added:

- DescStateTask,

- DescTimerTask,

- DescMayCallStateTaskAgain
.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

3 / 164

- ApplDescFatalError

API modified:

- DescTask,

- ApplDescCheckSessionTran
sition,

- DescGetActivityState,

- DescGetStateSession.

API removed:

- DescSchedulerTask

Modified description for
ReadDataByIdentifier with long data
and negative response in main-
handler.

Oliver Garnatz 2006-03-02 2.09.00 Added: ...prevent the ECU going to
sleep while diagnostic is active

Mishel Shishmanyan 2006-03-24 2.10.00 Added: document overview

Mishel Shishmanyan 2006-04-27 2.11.00 Modified:

-12.6.13
DynamicallyDefineDataIdentifier
($2C) (UDS) functions

-12.6.13.1
DescMayCallStateTaskAgain()

Mishel Shishmanyan 2007-02-22 2.12.00 Added:

 - 12.6.9.3
“DescRingBufferCancel()”

Matthias Heil 2008-01-03 2.13.00 Added:

Caution concerning user main

handler on protocol level l

Matthias Heil 2008-02-29 2.14.00 Added:

Handling of read/write memory by
address:
 - 9.3 “Read/Write Memory by
Address”

- 12.6.8.2
“DescStartMemByAddrRepeatedCal
l()”

- 12.6.14 ”Memory Access
Callbacks”

Mishel Shishmanyan 2008-06-06 2.15.00 Removed:

Chapter “ResponseOnEvent
Transmission Unit”

Added:

 - 12.6.13.3 “Non-volatile memory
support”

Mishel Shishmanyan 2008-11-09 2.16.00 Modified:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

4 / 164

- 12.6.9 and 12.6.9.1: Added
limitation for UDS and SPRMIB with
the ring buffer usage.

- 13.6 …work with the ring-buffer
mechanism

Added:

- 12.6.15 Flash Boot Loader
Support

- 13.8 …send a positive response
without request after FBL flash job

Mishel Shishmanyan 2009-05-18 2.17.00 Modified:

12.6.6.1ApplDescCheckSessionTra
nsition()

Added:

12.6.6.3DescIsSuppressPosResBit
Set ()

Mishel Shishmanyan 2009-08-11 2.18.00 Modified:

Minor editorial changes

5.2 Configure Handlers using

CANdela attributes – added new

data object attributes

Added:

13.9 …enforce CANdesc to use
ANSI C instead of hardware
optimized bit type

5.1 Configure DBC attributes for
diagnostics

Mishel Shishmanyan 2009-09-17 3.00.00 Added:

6 CANdesc Configuration in GENy

8 Multi Identity

12.6.2 Multi Variant Configuration
Functions

Mishel Shishmanyan 2010-01-26 3.01.00 Added:

7 CANdescBasic Configuration in
GENy

Mishel Shishmanyan 2010-12-21 3.02.00 Modified:

12.6.14.1
ApplDescReadMemoryByAddress()

12.6.14.2
ApplDescWriteMemoryByAddress()

12.6.9.2 DescRingBufferWrite()

Katrin Thurow 2011-08-25 3.03.00 Added:

8.1 Single Identity Mode

8.3 Multi Identity Mode

13.10 …configure Extended
Addressing

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

5 / 164

13.11 …use Multiple Addressing

12.6.6.7
DescGetSessionIdOfSessionState

Modified:

8 Multi Identity Support

13.8 …send a positive response
without request after FBL flash job

Katrin Thurow 2011-09-19 3.04.00 Added:

13.12…use “Dynamic Normal
Addressing Multi TP” with multiple
tester

Modified:

13.11 …use Multiple Addressing

Katrin Thurow 2011-11-27 3.05.00 Added:

12.6.17 “Spontaneous Response”
transmission

Modified:

6.2.1 Global CANdesc Settings

Patrick Rieder 2013-01-23 3.06.00 Added:

10 Generic Processing Notifications

12.6.18 Generic Processing
Notifications

Modified:

6.2.1 Global CANdesc Settings

12.6.4 Service callback functions

12.6.9 Ring Buffer Mechanism

Small fixes

Patrick Rieder 2013-05-27 3.07.00 Added:

11 Busy Repeat Responder Support

Modified:

13.12 …use “Dynamic Normal
Addressing Multi TP” with multiple
tester

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

6 / 164

Contents

1 History ... 2

2 Introduction... 12

3 Documents this one refers to… ... 13

4 Architecture Overview .. 14

4.1 CANdesc – Internal processing .. 14

4.1.1 Diagnostic protocol .. 14

4.1.2 How does this flow actually work? .. 15

4.2 Application interface flow ... 18

4.2.1 Session- and CommunicationControl ... 18

5 Advanced Configuration .. 19

5.1 Configure DBC attributes for diagnostics ... 19

6 CANdesc Configuration in GENy ... 20

6.1 Step One – Importing an ECU Diagnostic Description 20

6.2 Step Two – ECU Diagnostic Configuration in GENy ... 21

6.2.1 Global CANdesc Settings ... 22

6.2.1.1 Generic Processing Notifications (UDS2012) 27

6.2.2 Service Specific Settings .. 27

6.2.2.1 Generic Service Settings ... 28

6.2.2.2 Predefined (implemented) Services in CANdesc 29

6.2.2.3 Signal Access Enabled Services 31

6.2.3 Timing Settings .. 35

6.2.4 Security Access Settings (UDS2006) ... 36

6.2.5 Security Access Settings (UDS2012) ... 38

6.2.6 Scheduler Settings ... 39

7 CANdescBasic Configuration in GENy ... 42

7.1 Global CANdescBasic Settings .. 42

7.2 Service Specific Settings .. 42

7.3 Timing Settings .. 43

7.4 Diagnostic State Configuration ... 43

8 Multi Identity Support ... 47

8.1 Single Identity Mode .. 47

8.1.1.1 Configuration in CANdela... 47

8.1.1.2 Configuration in GENy ... 47

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

7 / 164

8.2 VSG Mode ... 47

8.2.1 Implementation Limitations... 48

8.2.2 Configuration in CANdela ... 49

8.2.3 Configuration in CANdela ... 50

8.2.4 Configuration in GENy ... 51

8.3 Multi Identity Mode ... 51

9 Diagnostic Service Implementation Specifics .. 52

9.1 ReadDataByIdentifier (SID $22) ... 52

9.1.1 Limitations of the service .. 53

9.1.2 Single PID mode .. 54

9.1.2.1 Sending a positive response using linear buffer
access ... 54

9.1.2.2 Sending a positive response using ring buffer access 55

9.1.2.3 Sending a negative response ... 56

9.1.3 Multiple PID mode .. 56

9.1.3.1 Pure linear buffer configuration 57

9.1.3.1.1 Sending a positive response 57

9.1.3.1.2 Sending a negative response 58

9.1.3.2 Ring buffer active configuration 58

9.1.3.2.1 Sending a positive response 60

9.1.3.2.2 Sending a negative response 61

9.1.3.2.3 PostHandler execution rule 62

9.2 DynamicallyDefineDataIdentifier (SID $2C) (UDS) ... 62

9.2.1 Feature set ... 63

9.2.2 API Functions... 63

9.2.3 Sequence Charts ... 64

9.3 Read/Write Memory by Address (SID $23/$3D) (UDS) 67

9.3.1 Tasks performed by CANdesc .. 67

9.3.2 Task to be performed by the Application ... 67

9.3.3 Repeated service calls ... 67

10 Generic Processing Notifications .. 69

10.1 Using dynamically defined data Identifier ... 70

11 Busy Repeat Responder Support (UDS2006 and UDS2012) 71

11.1 Configuration in GENy ... 72

12 CANdesc API ... 73

12.1 API Categories ... 73

12.1.1 Single Context .. 73

12.1.2 Multiple Context (only CANdesc).. 73

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

8 / 164

12.2 Data Types ... 73

12.3 Global Variables ... 73

12.4 Constants .. 73

12.4.1 Component Version.. 73

12.5 Macros ... 74

12.5.1 Data exchange ... 74

12.5.1.1 Splitting 16 bit data .. 74

12.5.1.2 Splitting 32 bit data .. 74

12.5.1.3 Assembling 16 bit data ... 74

12.5.1.4 Assembling 32 bit data ... 75

12.6 Functions ... 75

12.6.1 Administrative Functions .. 75

12.6.1.1 DescInitPowerOn()... 75

12.6.1.2 DescInit() ... 76

12.6.1.3 DescTask() ... 77

12.6.1.4 DescStateTask() .. 78

12.6.1.5 DescTimerTask() .. 79

12.6.1.6 DescGetActivityState() ... 80

12.6.2 Multi Variant Configuration Functions ... 81

12.6.2.1 DescInitConfigVariant() .. 81

12.6.2.2 DescGetConfigVariant() ... 82

12.6.3 Service Functions .. 83

12.6.3.1 DescSetNegResponse() .. 83

12.6.3.2 DescProcessingDone() .. 84

12.6.4 Service callback functions .. 84

12.6.4.1 Service PreHandler .. 87

12.6.4.2 Service MainHandler .. 88

12.6.4.3 Service PostHandler .. 90

12.6.5 User (Unknown) Service Handling ... 91

12.6.5.1 How it works .. 91

12.6.5.2 ApplDescCheckUserService() .. 92

12.6.5.3 DescGetServiceId().. 93

12.6.5.4 Generic User Service MainHandler 94

12.6.5.5 Generic User Service PostHandler 95

12.6.6 Session Handling ... 96

12.6.6.1 ApplDescCheckSessionTransition() 96

12.6.6.2 DescSessionTransitionChecked() 97

12.6.6.3 DescIsSuppressPosResBitSet () 98

12.6.6.4 ApplDescOnTransitionSession() 99

12.6.6.5 DescSetStateSession() .. 100

12.6.6.6 DescGetStateSession() ... 101

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

9 / 164

12.6.6.7 DescGetSessionIdOfSessionState 102

12.6.7 CommunicationControl Handling .. 103

12.6.7.1 ApplDescCheckCommCtrl() ... 103

12.6.7.2 DescCommCtrlChecked() .. 104

12.6.8 Periodic call of ‘Service MainHandler’ .. 105

12.6.8.1 DescStartRepeatedServiceCall() 105

12.6.8.2 DescStartMemByAddrRepeatedCall() 106

12.6.9 Ring Buffer Mechanism .. 106

12.6.9.1 DescRingBufferStart() .. 108

12.6.9.2 DescRingBufferWrite() ... 109

12.6.9.3 DescRingBufferCancel() .. 110

12.6.9.4 DescRingBufferGetFreeSpace() 111

12.6.9.5 DescRingBufferGetProgress()...................................... 112

12.6.10 Signal Interface of CANdesc .. 113

12.6.10.1 ApplDesc<Signal-Handler>() 113

12.6.10.2 Configuration of direct signal access 114

12.6.11 State Handling (CANdesc only) .. 114

12.6.11.1 DescGetState<StateGroup>() 114

12.6.11.2 DescSetState<StateGroup>() 115

12.6.11.3 ApplDescOnTransition«StateGroup»() 116

12.6.12 Force “Response Correctly Received - Response Pending”
transmission ... 117

12.6.12.1 DescForceRcrRpResponse() 118

12.6.12.2 ApplDescRcrRpConfirmation() 119

12.6.13 DynamicallyDefineDataIdentifier ($2C) (UDS) functions 119

12.6.13.1 DescMayCallStateTaskAgain() 120

12.6.13.2 ApplDescCheckDynDidMemoryArea() 121

12.6.13.3 Non-volatile memory support 122

12.6.13.3.1 DescDynDefineDidPowerUp() 125

12.6.13.3.2 DescDynIdMemContentRestored () 126

12.6.13.3.3 DescDynDefineDidPowerDown () 127

12.6.13.3.4 ApplDescStoreDynIdMemContent () 128

12.6.13.3.5 ApplDescRestoreDynIdMemContent () 129

12.6.14 Memory Access Callbacks ... 130

12.6.14.1 ApplDescReadMemoryByAddress() 130

12.6.14.2 ApplDescWriteMemoryByAddress() 131

12.6.15 Flash Boot Loader Support .. 131

12.6.15.1 DescSendPosRespFBL() ... 132

12.6.15.2 ApplDescInitPosResFblBusInfo() 133

12.6.16 Debug Interface / Assertion .. 134

12.6.16.1 ApplDescFatalError() ... 134

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

10 / 164

12.6.17 “Spontaneous Response” transmission .. 137

12.6.17.1 DescApplSendSpontaneousResponse() 138

12.6.17.2 ApplDescSpontaneousResponseConfirmation() 139

12.6.18 Generic Processing Notifications.. 140

12.6.18.1 ApplDescManufacturerIndication 140

12.6.18.2 ApplDescManufacturerConfirmation 141

12.6.18.3 ApplDescSupplierIndication ... 142

12.6.18.4 ApplDescSupplierConfirmation 143

13 How To… ... 144

13.1 …implement a protocol service MainHandler ... 144

13.2 …implement a service MainHandler... 147

13.3 …implement a Signal Handler.. 148

13.4 …implement a Packet Handler ... 149

13.5 …implement a state transition function .. 149

13.6 …work with the ring-buffer mechanism .. 151

13.6.1 with asynchronous write ... 151

13.6.2 with synchronous write ... 153

13.7 …prevent the ECU going to sleep while diagnostic is active 154

13.8 …send a positive response without request after FBL flash job 155

13.9 …enforce CANdesc to use ANSI C instead of hardware optimized bit type 155

13.10 …configure Extended Addressing .. 156

13.11 …use Multiple Addressing .. 156

13.12 …use “Dynamic Normal Addressing Multi TP” with multiple tester 158

14 Related documents ... 162

15 Glossary .. 163

16 Contact .. 164

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

11 / 164

Illustrations

Figure 3-1: Manuals and References for CANdesc .. 13
Figure 4-1: General request flow .. 14
Figure 4-2: DESC run diagram ... 15
Figure 4-3: Request message mapping ... 16
Figure 4-4: Request processing stages .. 17
Figure 6-1 CANdesc GENy startup screen ... 20
Figure 6-2 Example of GENy global CANdesc settings .. 22
Figure 6-3 Activated feature “Generic Processing Notifications” ... 27
Figure 6-4 GENy diagnostic service overview .. 28
Figure 6-5 GENy generic sub-service setup ... 29
Figure 6-6 GENy predefined sub-service setup .. 30
Figure 6-7 GENy signal API enabled sub-service setup ... 32
Figure 6-8 GENy signal view of a sub-service .. 33
Figure 6-9 GENy signal handler types .. 33
Figure 6-10 GENy direct access signal handler settings .. 34
Figure 6-11 GENy CANdesc timing parameters ... 36
Figure 6-12 GENy CANdesc security access parameters .. 37
Figure 6-13 Security settings in GENy ... 38
Figure 6-14 GENy CANdesc scheduler parameters ... 40
Figure 7-1 CANdescBasic add a user session ... 43
Figure 7-2 CANdescBasic change user session name, id or completely delete user

session ... 44
Figure 7-3 CANdescBasic session configuration at service overview 45
Figure 7-4 CANdescBasic session configuration at service Id level 45
Figure 7-5 CANdescBasic session configuration at sub-service level................................... 46
Figure 8-1 CANdesc multi identity mode .. 48
Figure 8-2 Defining VSGs in CANdelaStudio ... 50
Figure 8-3 Setting a VSG for service in CANdelaStudio ... 51
Figure 9-1: Linearly written positive response on single PID request.................................... 54
Figure 9-2: “On the fly” response data writing. ... 55
Figure 9-3: Negative response on single PID ... 56
Figure 9-4: Linearly written positive response on multiple PIDs (global ring buffer option is

off) .. 57
Figure 9-5: Negative response on multiple PIDs (global ring buffer option is off) 58
Figure 9-6: Linearly written response data on multiple PIDs (global ring buffer option is on) 61
Figure 9-7: Negative response on multiple PIDs (global ring buffer option is on) 61
Figure 9-8: Post-Handler execution sequence. .. 62
Figure 9-9: Defining a DDID. .. 65
Figure 9-10: Reading a DDID. .. 66
Figure 10-1 Call order of Manufacturer- and Supplier-Notficiation .. 69
Figure 10-2 Read out a DDID with generic processing notifications 70
Figure 11-1 Illustration of the feature BusyRepeatResponder 71
Figure 11-2 Example of the “Number of Rx(Tx) Channels” settings 72
Figure 12-1 DynDID definition restore and tester interaction .. 123
Figure 12-2 Store DynDID definitions ... 124
Figure 13-1 GENy TP configuration ... 156
Figure 13-2 GENy TP callbacks ... 157
Figure 13-3 GENy TP callbacks (physical addressing) ... 159
Figure 13-4 GENy TP callbacks (functional addressing) .. 159

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

12 / 164

2 Introduction

This document has not the job to describe the diagnostic itself. The focus of this document
is the technical aspects of the CANdesc component.

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

13 / 164

3 Documents this one refers to…

 User Manuals CANdesc and CANdescBasic (one for both)

 Docu OEM

Figure 3-1: Manuals and References for CANdesc

All common topics with CANdesc and CANdescBasic are described within this technical
reference very detailed.

Read all about OEM-specific differences in the TechnicalReference_OEM.

For faster integration, refer to the product’s corresponding user manual CANdesc or
CANdescBasic.

You are here

User Manual

Technical
Reference
General

Technical
Reference

OEM

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

14 / 164

4 Architecture Overview

This chapter should describe the internal structure and behavior of the CANdesc
component.

4.1 CANdesc – Internal processing

4.1.1 Diagnostic protocol

The communication described in the diagnostic protocol consists of a ping-pong
communication between a tester (client) and an ECU (server). The tester requests a
service in the ECU by transmitting a request to him. The ECU should response with a
positive response, if the result of this service is valid or the action is prepared to be done.
Is the result negative or the action could not be executed, the ECU should respond
negative.

The validity checks have typically the same pattern for all services (as shown in Figure
4-1: General request flow). These components which are included in this flow, build up the
main base of the CANdesc component.

Figure 4-1: General request flow

t

Diagnostics - CANdesc

Application

Check Svc

Check Session

Check SvcInst

Check Format

Mainhandler

{
....
DescProcessingDone();

}

Prehandler optional

{

}

Posthandler optional

{

}

Request

negative Response
Tester

positive Response

ACK

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

15 / 164

4.1.2 How does this flow actually work?

The picture below shows a simply structured description of the module functionality.

Request reception

Dispatching the request

Processing the request

Finishing processing of the

request

Idle mode/Awaiting request

Figure 4-2: DESC run diagram

Lets assume that the component is currently in the “Awaiting request” state. In this state
it waits for the next diagnostic request and if it is needed – it provides also timing
monitoring.

Once a diagnostic request transmission was initiated from the transport layer, the
component enters in the state “Request reception”. If the reception is finished, further
physical requests will be blocked until the response is sent. Depending on the used OEM a
functional request in the ISO 14230 standard will be handled parallel1 to physical request.
The ISO 14229-1 standard is more restricted to the parallel handling. Except the
TesterPresent Service no other service could be handled parallel.

1
 Not all services could be handled parallel.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

16 / 164

After the reception of the request is completed the request processing will be prepared.
The component is in the “Dispatching request” state. The processing of the request is
done at a task level within the next call of the DescTask() function.

First the SID is checked whether supported or not. If not a negative response
‘ServiceNotSupported’ (NRC $11) will be sent.

Next step is to check if the supported SID is permitted in the current Session (Diagnostic
Mode). If not, the negative response ‘ServiceNotSupportedInTheCurrentSession’ (NRC
$7F) is sent automatically by the CANdesc component.

Figure 4-3: Request message mapping

After that the CANdesc component validates, if the sub-service (service instance) is
supported or not. This is implemented with a powerful binary search. If the service
instance is not supported, the request will be rejected with the corresponding error code
‘SubFunctionNotSupported’ (NRC $11, for service which have SubFunctions) or
‘InvalidFormat’ (NRC $13, for service with data identifiers).

For each service instance which is supported by the current configuration, the CANdesc
component knows the exact length of most requests. (Some requests use variable data
length elements thus a fixed length doesn’t exist.) If the length is known and it does not
match, the dispatcher will reject this request (dependent to the manufacturer specification).
If the complete request length is not known, the application has to do this job.

If the service instance is found, the state checks (e.g. ‘Security Level’) will be performed. If
all of them are passed then the component enters the state “Processing the request” in
the diagram above. This state consists of several parts that are represented in more
detailed structure shown below. The dotted lines reveal the optional parts for the
implementation. For example – the Pre-, Post- and SignalHandlers are optional and might
not be implemented.

Service instance qualification
“Request head “

n Bytes (n=0..N)

 1Byte

m Bytes (m = 0..M)

Application data

SID

SID _EXT

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

17 / 164

Request analyzed

PreHandler

MainHandler

Signal-Handler #0

Signal-Handler #1

Signal-Handler #k

PostHandler

 Figure 4-4: Request processing stages

After the response is composed CANdesc must be informed about, to start the
transmission of the final response. CANdesc is doing the handshake with the Tester
(automatic transmission of RCR-RP) while the state “Processing the request” is active.

Within the end of the transmission the state “Finishing processing of the request” is
entered and the PostHandler (if configured) is called. In this PostHandler the application
has to do the closing (e.g. updating a state machine, prepare the ECU for a reset …). The
session state for example (which is managed by CANdesc) is also updated in a
PostHandler.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

18 / 164

4.2 Application interface flow

4.2.1 Session- and CommunicationControl

The services SessionControl and CommunicationControl are typically handled by
CANdesc. But the application still has the possibility to reject these service requests. You
can find a detailed description in chapter 12.6.6 Session Handling and in chapter 12.6.7
CommunicationControl Handling also.

IDLE

Receive a Request

Search

SID

IDLE

ApplDesc<PreHandler>

callback

SID $28

(SID $29)

ApplDescCheckCommCtrl

{

 ...

DescCommCtrlChecked();

}

Transmit positive

response $68

TX acknowledge

$68

ApplDescOnCommunicationEnabled

ApplDescOnCommunicationDisabled

>optional - not all OEMs<

WAIT

ApplDesc<PreHandler>

callback

Supported

SID $xx

ApplDesc<MainHandler>

{

 ...

 DescProcessingDone();

}

TX acknowledge

$xx

ApplDesc<PostHandler>

WAIT

ApplDesc<PreHandler>

callback

SID $10

ApplDescCheckSessionTransition

{

 ...

DescSessionTransitionChecked();

}

TX acknowledge

$50

ApplDescOnSessionTransition

WAIT

Unsupported

SID $xx

Transmit positive

response $50

Transmit

negative

response

NRC $11

Transmit positive

response $xx

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

19 / 164

5 Advanced Configuration

5.1 Configure DBC attributes for diagnostics

If the diagnostic messages shall be defined in the communication data-base file (DBC),
and not received via CANdriver ranges (e.g. in case of normal fixed or extended
addressing), the following attributes in the DBC file must exist and shall be set as shown
below.

Attribute Name Object
Type

Value
Type

Values

the default value is
written in bold

Description

DiagRequest Message Enum No

Yes

Specifies (Yes) that the message is a diagnostic
physical USDT request message.

DiagResponse Message Enum No
Yes

Specifies (Yes) that the message is a diagnostic
USDT response message.

DiagState Message Enum No
Yes

Specifies (Yes) that the message is a diagnostic
functional USDT request message.

DiagUudtResponse Message Enum false
true

Specifies (true) that the message is a diagnostic
UUDT response message.

Table 5-1: DBC file diagnostic message attributes

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

20 / 164

6 CANdesc Configuration in GENy

Since version 6.00.00, the CANdesc configuration concept has been improved by splitting
the concrete ECU parameterization and software integration from the diagnostic
specification.

The configuration of CANdesc in GENy consists of two important steps:

- Importing a diagnostic description file. Currently only CANdela (CDD) files are
supported therefore in further only the term CDD file will be used.

- Setup all service options required by the application like:

o Configure the service handlers (pre-, main- and post-handlers)

o Setup the service specific settings, like maximum number of dynamically
defined items per DynDID, size of scheduler for periodic data reading, etc.

o Setup timing parameters (e.g. periodic rates).

The second step is optional, since after importing a CDD file all important settings will be
already prepared for usage. If there are missing or invalid settings, GENy will notify you at
generation time.

6.1 Step One – Importing an ECU Diagnostic Description

After activating the CANdesc component in GENy, you will have the following view:

Figure 6-1 CANdesc GENy startup screen

At this time GENy does not have any CDD file and can not generate CANdesc. You have
to specify a CDD file, using the button on the option “CANdela document name”.

After selecting the CDD file, the CANdesc component tree view will look like:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

21 / 164

Info
Please note, the diagnostic buffer size is now set to a non-zero value. At CDD import
time, GENy calculates a statistic over all services with simple, linear data structure and
sets the buffer size to fit the longest request resp. response message. The message
window will show you which service requires the suggested buffer size:

Complex services like reading the faultmemory information or
upload/download/transferdata are excluded from this statistic, since the worst case
response calculation is not possible.

You can still set another value for the buffer size, even lower as the size suggested by
GENy. At generation time, the code generator will check again the set buffer size and
consider more options you have changed (like RingBuffer support) and notify you if the
buffer size is too small.

Now you can try to generate your diagnostic layer, using the default settings.

6.2 Step Two – ECU Diagnostic Configuration in GENy

Once the CDD content is imported, there are several options that can and shall be set up
for best match on your ECU integration needs.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

22 / 164

What You Can Configure in GENy

The goal of splitting the ECU integration configuration from the ECU diagnostic
specification is to provide a simplified view on what the ECU diagnostic application
developer is able to configure without danger of changing the diagnostic specification
provided by the OEM.

If a CANdesc parameter is not available in the source diagnostic description (CDD file),
you will be able to edit it in GENy, even if it is relevant for the diagnostic specification.

The chapters below will show you all configuration parameters of CANdesc that can be set
up in GENy.

What You Can Not Configure in GENy

All diagnostic parameters that could affect the ECU behaviour regarding its diagnostic
specification, provided by the concrete OEM or would lead to inconsistency between the
tester expectations on the ECU behaviour are not editable in GENy. If a change is required
on such a parameter, the diagnostic description source shall be modified, to guarantee that
the OEM or/and the tester will take this change into account.

6.2.1 Global CANdesc Settings

Under the generic settings you will find the options that affect the overall module
performance, independently of the diagnostic services that shall be supported. In the
picture and the table below follows the description of the settings for CANdesc.

Figure 6-2 Example of GENy global CANdesc settings

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

23 / 164

Attribute Name Availability Value Type Values

The default
value is written
in bold

Description

Cycle Time [ms] Always available. Integer 10
1..255

The DescTask (resp.
DescTimerTask) function must be
called EXACTLY in the time period
specified here.

This is important since the time
constant will be converted into a
number of function calls and if this
setting doesn't match the real call
cycle, the component internal
timeout monitors will not function
properly.

Generate CANdesc Always available. Button This feature is only available after
you have generated the whole
CANbedded package.

NOTE: If you run into problems,
generate the whole package again!

Number of ‘Busy-
RepeatRequest’
responded
Requests

OEM dependent
availability.

Integer 0
0..255

The value is the maximum count of
parallel handled diagnostic
requests. Only the first diagnostic
request will be processed, all other
(additonal) request, which will be
received while the first one is in
process, will be also received, but
only responded with NRC $21
('BUSY - repeat request'). If there
are more requests onto the bus
than this number, only the first N
will be responded - all other will be
just ignored.

Flashable ECU OEM dependent
availability.

Boolean False
True

Depending on the car
manufacturer this option has
different effects. Please, see the
OEM specific technical reference
document for more information.

Ring Buffer Support Always available. Boolean False
True

In case your ECU shall send a
very long positive response for
some services (usually when
reading fault memory) you can
reserve enough RAM for the
diagnostic buffer to handle the
longest possible response length,
or you can use the built-in ring-
buffer mechanism which allows
usage of smaller buffer. The linear
buffer usage saves ROM and run-
time but needs more RAM, the
ring-buffer saves RAM (you may
send 4095 Byte response with a
20Byte buffer) but requires more
ROM and causes run-time
overhead when used. NOTE: This

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

24 / 164

Attribute Name Availability Value Type Values

The default
value is written
in bold

Description

option just unlocks the built-in
support, but the selection usage of
the feature is done at run-time by
your application (for each service
independently).

Forced RCR-RP
Response

OEM dependent
availability.

Boolean False
True

In some cases (e.g. prior jump into
the FBL (FlashBootLoader), ECU
busy so no task function can be
called for long period of time) it is
necessary to prevent the tester
from ECU response timeout.
Enabling this feature you will be
able to send a RCR-RP
(ResponseCorrectlyReceived-
ResponsePending) response any
time during an active serivce
processing (main-handler called
but no DescProcessingDone has
been called yet).

Repeated Service
Call Type

Always available. Enum Deactivated
Always
Individual

In some cases (usually for slow
services like reading from
EEPROM) it is useful to let the
component to poll your application
(service main-handler) until the
service execution is completed.
Otherwise you have to leave the
service's main-handler function
and trigger an own additional
polling task and finalize the service
from there. Using the built-in
polling mechanism you will save
ROM and run-time. Also it prevents
from confusing code structures.

Always: Each main-handler will be
called as long as the application
didn’t call DescProcessingDone().

Individual: Each main-handler will
decide by itself if it will be called
once or as long as the application
didn’t call DescProcessingDone().

Production Mode OEM dependent
availability.

Boolean False
True

Enabling the production mode will
set all options in the possible
safest (uncritical) value.

Some car manufacturers don't
allow all of the features in
production, so they will be turned
off.

Spontaneous
Response

Available if Service
0x86 is part of the
diagnostic
configuration.

Boolean False
True

This setting enables the possibility
to send diagnostic responses
without a preceding request.
This feature is needed for Service
0x86 with Transmission Type I.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

25 / 164

Attribute Name Availability Value Type Values

The default
value is written
in bold

Description

The spontaneous response can be
triggered via the API
DescSendApplSpontaneousRespo
nse.

Supplier Notification
Support

Available if
CANdesc
according to ISO
14229-1 2012 is
used.

Boolean False
True

If this option is enabled, CANdesc
notifies the application on incoming
service requests and outgoing
responses. CANdesc only notifies
the application if the requested
service is supported in the active
session and security state. For
more details see 10 Generic
Processing Notifications

Manufacturer
Notification Support

Available if
CANdesc
according to ISO
14229-1 2012 is
used.

Boolean False
True

If this option is enabled, CANdesc
notifies the application on incoming
service requests and outgoing
responses. CANdesc notifies the
application right before the
processing of the request starts
and after a response has been
sent. For more details see 10
Generic Processing Notifications

Unknown Services
Acceptance

OEM dependent
availability.

Boolean False
True

In some cases if the diagnostic
database doesn't contain all
necessary service Ids, or you need
a (some) test identifier(s), you can
enable this option which will
redirect all received requests with
unknown service Ids to your
application for additional
acknowledgment and processing.

Unknown Services
Post Handler Calls

OEM dependent
availability.

Boolean False
True

If the option 'Unknown Services
Acceptance' is enabled, you may
use this feature to be notified each
time an unknown service
processing has been
accomplished. This post handler
usage is the same as the one of
the normal services post handlers.

Application Interface
Assertions

Always available. Boolean False
True

The SW component provides built-
in debug support (assertion) to
ease up the integration and test
into the project.

In general, the usage of assertions
is recommended during the
integration and pre-test phases. It
is not recommended to enable the
assertions in production code due
to increased runtime and ROM
needs. The assertion checks the
correctness of the assigned

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

26 / 164

Attribute Name Availability Value Type Values

The default
value is written
in bold

Description

condition and calls an error-
handler in case this fails. The error
handler is called with an error and
line number. You can find
information about the defined error
numbers in the Desc.h file.

Internal Assertions Always available. Boolean False
True

The SW component provides built-
in debug support (assertion) to
ease up the integration and test
into the project.

In general, the usage of assertions
is recommended during the
integration and pre-test phases. It
is not recommended to enable the
assertions in production code due
to increased runtime and ROM
needs. The assertion checks the
correctness of the assigned
condition and calls an error-
handler in case this fails. The error
handler is called with an error and
line number. You can find
information about the defined error
numbers in the Desc.h file.

List of DANIS
drivers

Always available. String List Add an arbitrary list of DANIS
drivers for custom bus access.

Each entry here will result in a user
driver, which can be used to
connect CANdesc to arbitrary
transport layers.

Example:

Adding a driver name “MostTp” will
force CANdesc to generate
templates for a driver with this
name. You will have only to
implement the functions of the
driver skeleton.

UUDT Message
Confirmation
Timeout [ms]

Available only if
UUDT message
transmission is
supported.

Integer 100
1..65535

This is the maximum time after
which a UUDT (Unacknowledged
Unsegmented Data Transfer)
message will be deleted from the
CAN drive request queue and (if
possible) will be replaced by the
next queued message.

Faultmemory
Iteration Limiter

Available only if
CANdesc provides
fault-memory
service

Integer 0
0..255

Limit the iteration depth for
faultmemory read services.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

27 / 164

Attribute Name Availability Value Type Values

The default
value is written
in bold

Description

implementation. Some faultmemory ($19) services
can consume much runtime when
performed en bloc. To reduce the
run time of the CANdesc task, use
this option to limit the iteration
depth of the faultmemory access
function so your controller can
handle the workload.

ATTENTION: Depending on your
Tp timeout settings, to low a
number of iterations can result in
an aborted transmission due to
buffer underrun.

A value of 0 (zero) will disable any
limitation.

Variant Mode
Selection

OEM dependent
availability.

Enum None
Multi Identity
Mode
VSG Mode

Note: This setting is independent
from communication identities!

None: The diagnostics support one
configuration only.

Multi Identity Mode: The
diagnostics support different
diagnostic variants. One variant is
active a time.

VSG Mode: Diagnostic Entities
(SubServices, DTCs...) are
grouped into VSGs. Several VSGs
can be active at a time.

6.2.1.1 Generic Processing Notifications (UDS2012)

On activation of the feature “Generic Processing Notifications”, GENy shows the names of
the additional callbacks that will be generated. The names of the callbacks are fixed and
can not be modified (see Figure 6-3). For a detailed description of the feature see chapter
10 Generic Processing Notifications.

Figure 6-3 Activated feature “Generic Processing Notifications”

6.2.2 Service Specific Settings

Once the CDD file is imported you can have an overview of the supported services of your
ECU:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

28 / 164

Figure 6-4 GENy diagnostic service overview

On this level you can also configure all services that will be supported on service Id level
only.

6.2.2.1 Generic Service Settings

Using the CANdesc component tree view you can explore the detailed settings for each
service and its sub-services (if available).

A generic sub-service setup looks like the picture below:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

29 / 164

Figure 6-5 GENy generic sub-service setup

Almost all services have a very simple configuration view. You can see the main-handler is
always available and a preview of the call-back name is shown.

You can only add a pre- and / or a post-handler to such a service, if required.

6.2.2.2 Predefined (implemented) Services in CANdesc

There are configurations (OEM dependent) where several services are fully implemented
by CANdesc. Such service can be, StartDiagnsoticSession, SecurityAccess,
DynamicallyDefinedDataIdentifier, ReadDataByPeriodicIdentifier, etc.

Those services that will not be handled by the application are marked in GENy as shown
on the picture:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

30 / 164

Figure 6-6 GENy predefined sub-service setup

As you can see, the main-handler is grayed and marked as “implemented by CANdesc”.
The same can apply (depends on the service) also to the pre- and post-handlers of the
service.

In the example on the Figure 6-6 GENy predefined sub-service setup you see that the pre-
handler is still free for usage. This means you can still implement a pre-handler to check
additional conditions prior CANdesc will be able to process the service. For other service it
could be also the post-handler free for implementation.

There are several services that make some exceptions to the predefined implementation
rule:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

31 / 164

Service 0x2A:

- PreHandler configuration is possible: If a pre-handler is required, it must be
enabled on all sub-functions of the concrete DID. The pre-handler name will
be “ApplDescPreReadPeriodicDid<DID instance name>”.

- PreHandler on “stop all” is not used by CANdesc and will not be considered
during the code generation even if it is enabled.

- Main-Handler are set to “implemented by CANdesc” since the data reading
call-back will be the corresponding 0x22 DID service call. This means that if
the corresponding service 0x22 DID has been set to use the “Signal API”, the
periodic reading service will use it too.

- Post-Handlers are not supported at all.

Service 0x2C:

- PreHandler configuration is possible: If a pre-handler is required, it must be
enabled on all sub-functions of the concrete DID. The pre-handler name will
be “ApplDescPreDynDefineDid<DID instance name>”.

- PreHandler on “clear all” is not used by CANdesc and will not be considered
during the code generation even if it is enabled.

- Main-Handler are set to “implemented by CANdesc” since the DID definition
is always done by CANdesc.

- Post-Handler are not supported at all.

6.2.2.3 Signal Access Enabled Services

Some services such as the UDS ones 0x22/0x2A and 0x2E, can be processed on signal
level. This means CANdesc will analyze the request/response data structure and generate
the service main-handler, leaving to the application only the task to provide the signal
values for the response, resp. to write the requested signal values to the ECU memory.

The setting view of such a service is shown below:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

32 / 164

Figure 6-7 GENy signal API enabled sub-service setup

Note: For the read dynamically defined DID service, there is no signal access since they
are always implemented by CANdesc internally.

If the “Signal API” option is not enabled this service is to be implemented like any other
diagnostic service. The data object specific settings, described below, will have no effect
on the code generation.

If the “Signal API” option is enabled, CANdesc will generate per default a call-back function
for any data object (signal) the service contains. You can specify more options on each
signal, to achieve the maximum advantage of CANdesc – fully implemented diagnostic
service.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

33 / 164

Figure 6-8 GENy signal view of a sub-service

You can have three types of signal handling:

Figure 6-9 GENy signal handler types

FAQ
Constant is only possible if the CDD file has contained constant value for the selected data
object. You can not specify in GENy a constant value for a signal handler.

In case of selected “Direct Access” signal handling, the following options will be enabled:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

34 / 164

Figure 6-10 GENy direct access signal handler settings

Attribute Name Availability Value
Type

Values

The default value is
written in bold

Description

Signal Handler Type Only for signal API
enabled services.

Enum SignalHandler
Constant
DirectAccess

Select the type of signal handler

Constant: The data value is
constant. The data value can be
used directly. This is used only
when the corresponding
subservice uses a signal API main
handler.

Signal Handler: Use a callback
function to get/set the data value.
This function is used only when the
corresponding subservice uses a
signal API main handler.

Direct Access: Directly use a
variable to access the data object.
Also, a signal API main handler
has to be used for this setting to
have any effect.

SignalHandler
Function Base
Name

Only for signal API
enabled services
and a signal
access through a
SignalHandler is
selected

String <DataObjectQ
ualifier>+<Dia
gInstanceQual
ifier>

This value is used as base for the
signal access function - depending
on how the value is used, the
name entered here is prefixed with
different prefixes, e.g
ApplDescRead / ApplDescWrite.

You can override the default name,
by specifying an own signal base.
The Prefix (e.g. ApplDesc can not
be overridden).

Signal Variable
Name

Only for signal API
enabled services

String <DataObjectQ
ualifier>

The name of the signal variable.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

35 / 164

Attribute Name Availability Value
Type

Values

The default value is
written in bold

Description

and if
DirectAccess
signal handling is
selected

Example:

c_dataTemp

g_applData.bit0

Signal Variable
Prototype

Only for signal API
enabled services
and if
DirectAccess
signal handling is
selected

Enum Ram
None
Const
User

To create the proper extern
declaration to access the signal
variable, the proper access
modifiers have to be specified.

None: No prototype is generated at
all. "DescType.h" where the user
has to define the real typedefs (for
structure access for example).

Ram: The variable is located in
RAM.

Const: The variable is located in
ROM.

User: Set a user defined prototype.

Signal Variable User
Prototype

Only for signal API
enabled services
and if
DirectAccess
signal handling is
selected

and if the Signal
Variable Prototype
is set to User

String Empty Set the prototype of the signal
variable.

Example:

boolean

EcuTempType

6.2.3 Timing Settings

GENy imports all possible timings that the diagnostic description source provides. Those
parameters that are available in the CDD file are considered as a part of the ECU
specification and are not modifiable in GENy. If a modification of those parameters is
required, please change their values in the diagnostic description file and re-import it in
GENy.

All other parameters can be set up manually, but the default value already matches the
OEM specification.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

36 / 164

Figure 6-11 GENy CANdesc timing parameters

6.2.4 Security Access Settings (UDS2006)

If the security access service is implemented by CANdesc (see the service handler on the
service 0x27 instances), you can set here the level specific attributes, like attempts to start
the delay time, delay time on power on, etc.

Caution
It is OEM specific property whether the security access parameters will be evaluated
security level specific or not. In case the security access service specification of the
concrete OEM requires only global configuration of these options, the code generator
will calculate the maximum value over all levels for each parameter and this value will
be used by the service implementation in CANdesc.

Example: Level 1 has “Attempt Counter” = 1, and Level 2 has for the same parameter =
3. CANdesc will use then for “Attempt Counter” = 3 for all security levels.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

37 / 164

Figure 6-12 GENy CANdesc security access parameters

Attribute Name Availability Value
Type

Values

The default value is
written in bold

Description

Attempt Counter Only if the
SecurityAccess
state group is
available

Integer 0
1..255

Specifies the maximum number of
failed attempts to unlock the ECU.
If this number is reached, a delay
for the next security access try will
be inserted.

If a non-zero value is entered, the
delay time must be set to a non-
zero value too.

Note: This parameter has only
effect only if the SecurityAccess
service is handled by CANdesc.

Initial Delay [ms] Only if the
SecurityAccess
state group is
available

Integer 0
1..65535

Specifies the delay time after the
maximum retry attempt count has
been reached.

If a non-zero value is entered, the

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

38 / 164

Attribute Name Availability Value
Type

Values

The default value is
written in bold

Description

attempt count must be set to a
non-zero value too.

Note: This parameter has only
effect only if the SecurityAccess
service is handled by CANdesc.

PowerOn Delay [ms] Only if the
SecurityAccess
state group is
available

Integer 0
1..65535

Specifies the delay time at power
on.

If a non-zero value is entered, the
delay time must be set to a non-
zero value too.

Note: This parameter has only
effect only if the SecurityAccess
service is handled by CANdesc.

6.2.5 Security Access Settings (UDS2012)

Due to the new features in CANdesc UDS2012, the configuration of the security levels in
GENy has changed.

Figure 6-13 Security settings in GENy

Attribute Name Availability Value
Type

Values

The default value is
written in bold

Description

Level Specific Failed
Access Attempt
Supervision

Only if the
SecurityAccess
state group is
available

Boolean False
True

Switch to select whether a global
false attempt counter and delay
timer for all security levels shall be
used (false) or if each level has its
own false attempt counter and
delay timer (true).

Use Static Seed Only if the
SecurityAccess
state group is

Boolean False
True

For each level can be selected if a
static seed is used (true) or not
(false). Static seed means that

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

39 / 164

Attribute Name Availability Value
Type

Values

The default value is
written in bold

Description

available CANdesc stores the seed and re-
uses the seed in a positive
response to a seed request for that
level, until the level is unlocked.

Failed Attempt
Counter to Delay

Only if the
SecurityAccess
state group is
available

Integer Value
imported from
the Cdd file.
0..65535

The number of failed security
unlock attempts allowed before a
delay is imposed between
attempts.

Failed Attempt
Delay [ms]

Only if the
SecurityAccess
state group is
available

Integer Value
imported from
the Cdd file.
0..65535

The delay time in ms which is
imposed if the Failed Attempt
Counter limit has been reached.
Further security access attempts
are discarded, until the delay has
expired.

PowerOn Delay [ms] Only if the
SecurityAccess
state group is
available

Integer Value
imported from
the Cdd file.
0..65535

The delay time in ms which is
imposed when the ECU is
powered on. Requests to unlock
the security level are declined until
the delay has expired.

6.2.6 Scheduler Settings

If the ECU shall support the periodic data reading service, the following settings are
relevant and shall be setup to match the ECU performance and RAM resource availability.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

40 / 164

Figure 6-14 GENy CANdesc scheduler parameters

Attribute Name Availability Value
Type

Values

The default value is
written in bold

Description

Maximum Count of
Scheduled Items

Only if the periodic
data reading
service is available
in the ECU
configuration.

Integer 5
1..255

The maximum number of items
that are sent periodically.

You can only request at most this
number of periodic DIDs,
independently per scheduling rate.

Example:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

41 / 164

Attribute Name Availability Value
Type

Values

The default value is
written in bold

Description

If set up 5 items for scheduling,
CANdesc will be able to schedule
at most 5 items at fast, 5 items at
slow and 5 items at medium rate.

Note: If the scheduler size exceeds
the total number of available
periodic DIDs, CANdesc will
automatically reduce the size to
the lowest value.

Fast/Medium/Slow
Scheduling Rate
[ms]

Only if the periodic
data reading
service is available
in the ECU
configuration.

Integer OEM
dependent
1..65535

Specifies the timings of each
scheduling rate that the ECU
supports.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

42 / 164

7 CANdescBasic Configuration in GENy

As already stated in 6 CANdesc Configuration in GENy since version 6.00.00, the
CANdesc configuration in GENy has been changed. Both CANdesc and CANdescBasic
variants share the same GUI and settings representation in GENy. Due to the reduced
feature set in CANdescBasic, its GENy GUI provides you correspondingly a reduced
configuration option set, covering all of the CANdescBasic requirements.

7.1 Global CANdescBasic Settings

CANdescBasic shares the same global settings as the CANdesc variant (refer to chapter
6.2.1 Global CANdesc Settings).

Info
CANdescBasic does not support any of the multi identity modes!

7.2 Service Specific Settings

In CANdescBasic, you don’t have any more an external diagnostic specification document
that shall be imported (like a CDD file). In your software delivery, there is already a
prepared diagnostic configuration template that fulfills the concrete OEM and its diagnostic
protocol requirements.

Info
In CANdescBasic versions, prior 6.00.00, it was possible to import information, out of a
CDD file, whether a service Id is supported or not-supported and any new sessions. In
CANdesc 6.00.00 and newer this feature is temporarily disabled, but you still can
manually configure these changes.

Since CANdescBasic provides only a Sid view over the diagnostic services, its service specific configuration is performed
primarily within the service overview grid in GENy (refer to chapter 0

Service Specific Settings

CANdescBasic also provides a built in support for some of the diagnostic services like
CANdesc, but its scope is reduced (due to lack of enough service definition information)
only to the most important for diagnostic communication services (e.g.
DiagnosticSessionControl, TesterPresent, etc.). You will recognize these services in GENy
as described in chapter 6.2.2.2 Predefined (implemented) Services in CANdesc.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

43 / 164

7.3 Timing Settings

The configuration aspect of the CANdescBasic timings settings is the same as described
in 6.2.3 Timing Settings, with the difference, that here there is no CDD file but a predefined
template.

7.4 Diagnostic State Configuration

CANdescBasic has a built in support only for the diagnostic session states. All other states
like SecurityAccess and ECU specific service execution conditions shall be implemented
by the application.

The supplied CANdescBasic template already includes all mandatory session, specified by
the concrete OEM. If some additional sessions needed, you can add them in GENy as
shown below:

Figure 7-1 CANdescBasic add a user session

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

44 / 164

Info
For any session added by you (user sessions), GENy automatically creates all session
transitions, required by the concrete diagnostic protocol (e.g. UDS, KWP2000).

Examples:

 Service 0x10:

 <AllExistingSessions>-><NewSsession>,

 <NewSession>-><NewSession>

 Service 0x20:

 <NewSession>-><DefaultSession>

Caution
The allowed session Ids are protocol dependent. For example: on UDS you can not
specify user sessions with Ids greater than 0x7F. On KWP2000 any value is acceptable
for session Id.

The session Id must be a unique value among all sessions, supported by your ECU.

For the user defined session, you can any time change their name, session or completely
remove them:

Figure 7-2 CANdescBasic change user session name, id or completely delete user session

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

45 / 164

Once a user session has been added, you can configure for each service whether it shall
be supported or not in the new session. You can do this configuration either on the service
overview grid, or if there are some service that have sub-services, for each sub-service.
The pictures below show each of the service level configuration views.

Figure 7-3 CANdescBasic session configuration at service overview

Figure 7-4 CANdescBasic session configuration at service Id level

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

46 / 164

Figure 7-5 CANdescBasic session configuration at sub-service level

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

47 / 164

8 Multi Identity Support

CANdesc allows you to use multiple diagnostic configuration sets – a use case where the
ECU always communicates over the same connection, but shall implement different
functionality depending on some hardware (jumper) setting.

All supported configuration sets are described in the following chapters.

Info
Please note:

The multi identity feature of CANdesc is:

- firstly supported in CANdesc 6.00.00;

- not supported at all in the CANdescBasic variant.

8.1 Single Identity Mode

CANdesc has a static configuration set – once all services and communication
connections are configured, and the program code is flashed into the ECU there are no
more configuration changes possible.

8.1.1.1 Configuration in CANdela

You need just to prepare the corresponding CDD variant for your ECU configuration in
CANdelaStudio.

8.1.1.2 Configuration in GENy

Import the CDD file and the corresponding variant in GENy (refer to chapter 6.2 Step Two
– ECU Diagnostic Configuration in GENy for details).

8.2 VSG Mode

The VSG mode is a special multi identity mode, which has the following characteristics:

 Allows to support multiple diagnostic configuration variants – each variant reflects a
VSG from the imported CDD file, and additionally there is a base variant that contains
all services that does not belong to any VSG.

 One or several configuration variants can be simultaneously activated during the ECU
initialization. The base variant is always active.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

48 / 164

Figure 8-1 CANdesc multi identity mode

CANdesc will be initialized with the base variant at ECU start up sequence. If required,
additional variant(s) can be activated by the application (please refer to chapter 12.6.2
Multi Variant Configuration Functions for more information about the variant initialization).

8.2.1 Implementation Limitations

In order to generate the correct NRC for a requested service Id (e.g. 0x7F
(ServiceNotSupprtedInActiveSession), CANdesc considers all of its sub-services
diagnostic session specific execution precondition and calculates a diagnostic session
filter for the SID. In case of a multi-identity such a calculation shall be made for all of the
diagnostic configuration variants, which will cost a lot of ROM resources.

In order to keep CANdesc ROM resources as low as possible the service Id specific
session filtering is created considering the superset of all sub-services it contains,
independently of their configuration affiliation. Depending on the active configuration set in
the ECU, this limitation can lead to the following effect:

A requested service will be responded with the NRC 0x12 (SubfunctionNotSupported) or
0x31(requestOutOfRange), depending on if it has a sub-function or not, instead of the
NRC 0x7F. Such a configuration could be for example:

Service 0x22 (ReadDataByIdentifier) supports only two DIDs:

0xF100 - supported only in the default diagnostic sessions and available only in variant 1;

0xF101 – supported only in a non-default session and available only in variant 2.

CANdesc will summarize in this case, that service 0x22 is allowed in any diagnostic
session since there is at least one DID supported in at least one of each session.

Now let’s assume the ECU is powered up with active variant 2. If the client sends a
request 0x22 0xF100 while in the default diagnostic session, CANdesc will respond with

CANdesc

TP

CANdesc
APPL

CANdesc
DIAG CFG

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

49 / 164

the NRC 0x31 (DID not supported), instead of the 0x7F (none of the DIDs in the active
configuration is executable in the default session -> the service Id itself is not executable in
the session -> NRC 0x7F would be expected).

8.2.2 Configuration in CANdela

 If multiple diagnostic configuration sets shall be selectable in CANdesc, you will need a
CDD with several VSGs where each describes a diagnostic configuration set.

Caution
CANdesc supports the multiple diagnostic configurations only on service/sub-service
availability level. Therefore the following limitations must be considered while creating
the separate CDD files resp. CANdela variants for CANdesc:

 A service can be completely deactivated within a VSG;

 A sub-service (e.g. DID, sub-function, etc.) can be completely deactivated within a
VSG;

 If a service exist in multiple VSGs, then it must have exactly the same properties

- Execution pre-conditions (e.g. diagnostic session, security access, etc.)

- Support of SPRMIB

- Addressing mode (physical/function)

- Response behavior (response on physical/function request)

 If a sub-service exist in multiple VSGs, then it must have exactly the same
properties

- Execution pre-conditions (e.g. diagnostic session, security access, etc.),
resp. trigger of state transitions.

- Addressing mode (physical/function)

- Response behavior (response on physical/function request)

- Protocol information semantic (sub-function, identifier, etc.)

- Request resp. response content must be identical – same data
structure, data types, and constant value (if any available)

 Service 0x31 (RoutineControlByIdentifier) specifics

- The multi-identity varying is allowed only on RID level. If a RID is
supported in multiple variants, then the sub-functions supported by this
RID must be the same (i.e. it is not allowed to have one variant with only
“start” sub-function and one with “start and stop” for the one and same
RID).

 Service 0x2F (IoControlByIdentifier) specifics

- The multi-identity varying is allowed only on DID level. If a DID is
supported in multiple variants, then the control options supported by this
DID must be the same (i.e. it is not allowed to have one variant with only
“ShortTermAdjustment” and one with “ShortTerm-Adjustment and
ReturnControlToEcu” for the one and same DID).

If at least one of the above requirements is not fulfilled, the variant that violates the rule
will not be imported.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

50 / 164

8.2.3 Configuration in CANdela

Please follow the steps below on how to configure VSG in CANdelaStudio.

1. Defining all available VSGs for the concrete ECU.

In CANdelaStudio, select the Vehichle System Groups view and add all necessary VSGs
into the VSG pool.

Figure 8-2 Defining VSGs in CANdelaStudio

The name of the created VSG will be used later by CANdesc for the diagnostic
configuration constants that the CANdesc application shall use during the configuration
activation phase (refer to chapter 12.6.2 Multi Variant Configuration Functions).

Once all of the required VSGs are created, you can start with the service to VSG
assignment.

2. Service to VSG assignment

Using CANdelaStudio you can assign any diagnostic instance to none, one or multiple
VSGs. Those services that do belong to a diagnostic instance without a VSG assignment
will be considered as services of the base variant (services that are always available).

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

51 / 164

Figure 8-3 Setting a VSG for service in CANdelaStudio

8.2.4 Configuration in GENy

In order to put GENy into VSG mode, you have to select it on the CANdesc component
root. Please refer to the chapter 6.2.1 Global CANdesc Settings for details about the
variant selection option.

Now import the CDD file, containing the VSGs in GENy as described in chapter 6.1 Step
One – Importing an ECU Diagnostic Description. That is all.

8.3 Multi Identity Mode

Multi Identy Mode is not supported by CANdesc.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

52 / 164

9 Diagnostic Service Implementation Specifics

9.1 ReadDataByIdentifier (SID $22)

This service has the purpose to read some predefined data records (PID). Each PID has a
concrete data structure which is designed by CANdelaStudio.

As the standard case the request contains a single PID. This results in a single response
containing the data structure of the record.

The UDS allows to request multiple PIDs in a single request. This results is also a single
response including the data structure of each requested PID.

CANdesc will hide this multiple PID processing from the application. To do that some minor
limitations in the interface has to be made (see chapter 9.1.2 Single PID mode). To show
the differences, we discuss first the standard case. In the standard case there is no
multiple PID processing possible. The second chapter (9.1.3 Multiple PID mode) is
showing the multiple PID processing.

Which mode is used depends on the configuration (typically the OEM).

$22 $12

Single PID mode (well know case) example for PID $1234

$34

Tester‘s request:

$62 $12 $34

ECU‘s response:

Data block

$22 $12

Single PID mode (well know case) example for PID $1234

$34

Tester‘s request:

$62 $12 $34

ECU‘s response:

Data block

$22 $12

Multiple PID mode example for PIDs: $1234, $ABCD

$34

Tester‘s request:

$62 $12 $34

ECU‘s response:

Data block

ABCD

ABCD Data block

$22 $12

Multiple PID mode example for PIDs: $1234, $ABCD

$34

Tester‘s request:

$62 $12 $34

ECU‘s response:

Data block

ABCD

ABCD Data block

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

53 / 164

9.1.1 Limitations of the service

Session management

This service contains no sub-function identifier which means the global state group
“session” may not be selected as a “relevant group” for any instance of this service. If
there is a need for a PID to be rejected under a certain session, all PIDs must follow this
rule and be specified to be rejected for this session. As a result the whole SID $22 will be
rejected for this session. This behavior is harmonized with the UDS protocol specification,
which allows service identifiers to be rejected in a session but no parameter identifiers.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

54 / 164

9.1.2 Single PID mode

The Single PID mode is configured automatically, if the number of PIDs that can be
requested at the same time, is limited to one PID. If more than one PID is requested, the
request will be rejected with ‘RequestOutOfRange’ (NRC $31).

If the multiple PID mode of CANdesc is deactivated, the service $22 will be executed and
processed like any other diagnostic service without any additional specifics or limitations.

9.1.2.1 Sending a positive response using linear buffer access

Figure 9-1: Linearly written positive response on single PID request

Tester CANdesc Application

SId[$22],Pid[$xxxx]

ApplDescReadDataById_xxxx

DescProcessingDone()

Write data (pMsgContext->resData)

Set total response data length
(pMsgContext->resDataLen = N)

RSid[$62], PID[$xxxx], Data[N]

ApplDescPreReadDataById_xxxx

StateGroupsCheck for Pid

Check all states if the
"read PID" service can
be executed.

If available execute the pre-handler and
check if the application rejected the service.

Execute the main-handler
to fill the response data.

The positive response transmission will be
initiated after the DescProcessingDone
gets called.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

55 / 164

9.1.2.2 Sending a positive response using ring buffer access

Figure 9-2: “On the fly” response data writing.

Tester CANdesc Application

SId[$22],Pid[$xxxx]

FF (RSid[$62], PID[$xxxx], Data[3])

ApplDescReadDataById_xxxx

DescRingBufferStart()

Write data (DescRingBufferWrite())

Set total response data length
(pMsgContext->resDataLen = N)

Write data (DescRingBufferWrite())

CF(Data[N-3])

StateGroupsCheck for Pid

ApplDescPreReadDataById_xxxx

Check all states if the
"read PID" service may
be executed.

If available execute the pre-handler and check if
the application rejected the service.

Execute the main-handler
to fill the response data.

The positive response transmission will be initiated after
the DescRingBufferStart gets called and there are at
least 7 bytes ready to be transmitted (i.e. 3 data bytes).

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

56 / 164

9.1.2.3 Sending a negative response

Due to the fact that the negative response handling has changed in the multiple PID mode,
we recommend to do the same handling in the Single PID mode, too. Please refer the
chapter 9.1.3.2 “Ring buffer active configuration” for the recommended negative response
handling.

Figure 9-3: Negative response on single PID

9.1.3 Multiple PID mode

The Multiple PID mode is configured automatically if the number of PIDs, that can be
requested at the same time, is greater than one. If more than this predetermined number
of PIDs is requested, the request will be rejected with ‘RequestOutOfRange’ (NRC $31).

In this configuration some minor limitations must be taken into account while using the
CANdesc interfaces.

For the service “ReadDataByIdentifier” the ring-buffer feature can be used. Depending on
the usage of this feature, there are two main use cases for the multiple PID mode.:

Tester CANdesc Application

Check all states if the
"read PID" service can
be executed.

If available execute the pre-handler and
check if the application rejected the service.

Execute the main-handler
to fill the response data.

The negative response transmission will be
initiated after the DescProcessingDone
gets called.

SId[$22],Pid[$xxxx]

RSid[$7F], Sid[$22], ErrorCode[errorCode]

StateGroupsCheck for Pid

ApplDescReadDataById_xxxx

DescProcessingDone()

DescSetNegresponse(errorCode)

ApplDescPreReadDataById_xxxx

The main-handler still can
register any errors.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

57 / 164

9.1.3.1 Pure linear buffer configuration

The ring-buffer feature is deactivated in general.

If the system doesn’t use any ring buffer access for filling the response, the PID pipeline is
still quite simple and therefore with less limitations to the CANdesc API usage and
application performance.

9.1.3.1.1 Sending a positive response

Figure 9-4: Linearly written positive response on multiple PIDs (global ring buffer option is off)

Tester CANdesc Application

SId[$22],Pid0[$xxxx],Pid1[$yyyy]

FF (RSid[$62], PID0[$xxxx], Data[3])

CF[i](Data[N-3],PID1[$yyyy]Data[M)

ApplDescPreReadDataById_xxxx

Set total response data length
(pMsgContext->resDataLen = N)

Write data (pMsgContext->resData)

ApplDescPreReadDataById_yyyy

ApplDescReadDataById_xxxx

DescProcessingDone()

ApplDescReadDataById_yyyy

Write data (pMsgContext->resData)

Set total response data length
(pMsgContext->resDataLen = M)

DescProcessingDone()

StateGroupsCheck for PID0[$xxxx]

StateGroupsCheck for PID1[$yyyy]

Before the requested PIDs will be processed, check
all PIDs':
1. States (may be executed)
2. Pre-handlers.

Execute the first PID's
main-handler to fill the response
data.

Once the service execution of
the current PID has been
accomplished...

...execute the next
queued one.

The positive response transmission will be
initiated after all PIDs have called
DescProcessingDone and all the data ...

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

58 / 164

9.1.3.1.2 Sending a negative response

This example depicts the case where from two requested PIDs the first one may not be
accessible and rejects the service execution.

Figure 9-5: Negative response on multiple PIDs (global ring buffer option is off)

9.1.3.2 Ring buffer active configuration

Attention: The Ring-Buffer in ‘Multiple PID‘ services can be first-time used since CANdesc
version 2.13.00

Different concepts for the buffer handling were discussed while development. Two
solutions with different pros and cons are discussed here:

 Multiple buffer

Normally each service handler (MainHandler routine) has the whole diagnostic buffer
available (apart from the protocol header bytes hidden by CANdesc). Based on this logic
the service $22 using PID pipelining has the same tasks as the normal service processor:
executing a PID handler and provide him the whole diagnostic buffer for response data.
This will hide the whole process and makes the application’s life easier (no exceptions for
the implementation). To realize this concept means to provide a separate diagnostic buffer
for each PID which size is the same as the main one (configured by GENtool). This is a
fast and quite simple solution but requires too much RAM to be reserved for only the case
that sometimes the testers would like to use the maximum capacity of the ECU (i.e.
requests as many PIDs as possible for this ECU in a single request).

Pros: less ROM usage

Tester CANdesc Application

Before requested PIDs will be processed check all
PIDs':
1. States (may be executed)
2. Pre-handlers.

Execute the first PID's
main-handler to fill the response
data.

Once the service execution of
the current PID has been
accomplished...

...stops the further
processing a...

SId[$22],Pid0[$xxxx],Pid1[$yyyy]

RSid[$7F], Sid[$22], ErrorCode[errorCode]

StateGroupsCheck for PID0[$xxxx]

StateGroupsCheck for PID1[$yyyy]

ApplDescPreReadDataById_xxxx

DescSetNegResponse(errorCode)

ApplDescPreReadDataById_yyyy

ApplDescReadDataById_xxxx

DescProcessingDone()

The second PID's
Main-handler will not be
executed.

Skip further processing
of the list

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

59 / 164

Cons: very high RAM usage

 virtual multiple buffer

This concept is more generically designed and will not have additional ROM overhead if
the pipeline size will be increased. An intelligent buffer concept gives the application the
whole size of the buffer for each MainHandler call.

Once the whole data for the current PID has been written, the data supplement will stop
(because the next PID handler will not be called). The transmission in the transport layer is
started and some time later it runs into buffer under-run. This ‘signal’ is used to call the
next PID MainHandler. This MainHandler has to provide his data very quick. Otherwise the
response transmission will stop (due to a continuously buffer under-run).

Pros: less RAM usage (practically independent of the maximum list size).

Cons: moderate ROM overhead / the response data must be composed very
quickly.

The virtual multiple buffer concept is the implemented solution. The application can choose
for each PID separately to write the data linearly or by using the ring buffer.

performance requirements

The application has performance requirements:

- If linear access has been chosen, the whole response data of each MainHandler
must be filled within the lower duration of the P2 time and the TP confirmation
timeout. Normally the P2 time is shorter than the transport layers confirmation
timeout so just take into account that each Main-Handler must be able to fill its
response data within a time far shorter than the P2 time.

- If ring buffer access has been chosen, the application has to call the
“DescRingBufferWrite” fast enough to keep TP from confirmation timeout.

Negative response on PID

The negative response handling is changed in the multiple PID mode! This affects all
protocol-services with a activated ‘May be combined’ property. The UDS specification
encloses only the SIDs: $22 and $2A. For all other services the negative response
handling is not changed!

If the application has to reject a request (e.g. ignition key check) it has to do that in the
PreHandler. The application is not allowed to call “DescSetNegResponse()” to send a
negative response in any MainHandler.

This limitation is based on the concept to check all reject conditions in PreHandlers before
starting the transmission. This is necessary because after CANdesc has executed the first
MainHandler (which starts the positive response transmission) there will be no chance to
send a negative response.

The usage of the concept: CANdesc starts to call all PreHandlers of this multiple PID
request. If no negative response is set, CANdesc will start to call the corresponding
MainHandlers. Within the first call of DescProcessingDone() the transmission is initiated.

Note (for version 3.02.00 of CANdesc and above):

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

60 / 164

In case the application sets an error code during the main-handler execution in non-debug
(released) version of the component, depending on the situation will lead to:

For service $22:

- First DID of the list main-handler: sending a negative response to service $22;

- Second or any of the succeeding DIDs in the list: transmission interruption.

For service $2A:

- Ignoring the scheduled response.

9.1.3.2.1 Sending a positive response

Tester CANdesc Application

SId[$22],Pid0[$xxxx],Pid1[$yyyy]

FF (RSid[$62], PID0[$xxxx], Data[3])

CF[i](Data[N-3])

StateGroupsCheck for PID0[$xxxx]

StateGroupsCheck for PID1[$yyyy]

ApplDescPreReadDataById_xxxx

Set total response data length
(pMsgContext->resDataLen = N)

Write data (pMsgContext->resData)

ApplDescPreReadDataById_yyyy

ApplDescReadDataById_xxxx

DescProcessingDone()

ApplDescReadDataById_yyyy

Write data (pMsgContext->resData)

Set total response data length
(pMsgContext->resDataLen = M)

DescProcessingDone()

CF[j](Data[N-k],PID1[$yyyy]Data[m])

CF[l](Data[M-m])

Before requested PIDs will be processed check all
PIDs':
1. States (may be executed)
2. Pre-handlers.

Execute the first PID's
main-handler to fill the response
data.

With the first called
DescProcessingDone() starts
the response transmission.

Once the whole data of the current PID has
been sent the next PID main-handler will be
called to supply the response data.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

61 / 164

Figure 9-6: Linearly written response data on multiple PIDs (global ring buffer option is on)

9.1.3.2.2 Sending a negative response

Figure 9-7: Negative response on multiple PIDs (global ring buffer option is on)

Tester CANdesc Application

Before requested PIDs will be processed check all
PIDs':
1. States (may be executed)
2. Pre-handlers.

If error has been set - no
main-hadnler processing will
follow.

Send immediately
negative response.

SId[$22],Pid0[$xxxx],Pid1[$yyyy]

RSid[$7F], Sid[$22], ErrorCode[errorCode]

StateGroupsCheck for PID0[$xxxx]

StateGroupsCheck for PID1[$yyyy]

ApplDescPreReadDataById_xxxx

ApplDescPreReadDataById_yyyy

DescSetNegResponse(errorCode)

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

62 / 164

9.1.3.2.3 PostHandler execution rule

All PostHandlers are executed after the finished response transmission (like a normal
PostHandler).

Independent of the ring-buffer option setting (enabled or disabled), the execution of the
service $22 PostHandler(s) has the following rule which has to be taken into account:
calling the Post-Handler of a specific PID means: either the PreHandler of this PID
has been previously called or its MainHandler.

The following sequence chart depicts this:

Figure 9-8: Post-Handler execution sequence.

9.2 DynamicallyDefineDataIdentifier (SID $2C) (UDS)

The DynamicallyDefineDataIdentifier service allows the client (tester) to dynamically define
in a server (ECU) a data identifier that can be read via the ReadDataByIdentifier service at
a later time.

The intention of this service is to provide the client with the ability to group one or more
data elements into a data superset that can be requested en masse via the

Tester CANdesc Application

Before requested PIDs will be processted check all
PIDs':
1. States (may be executed)
2. Pre-handlers.

If error has been set - no
main-hadnler processing will
follow.

Send immediately
negative response.

SId[$22],Pid0[$xxxx],Pid1[$yyyy],
Pid2[$zzzz]

RSid[$7F], Sid[$22], ErrorCode[errorCode]

StateGroupsCheck for PID0[$xxxx]

StateGroupsCheck for PID1[$yyyy]

ApplDescPreReadDataById_xxxx

ApplDescPreReadDataById_zzzz

DescSetNegResponse(errorCode)

StateGroupsCheck for PID2[$zzzz]

PID1 has no pre-handler
cofigured.

ApplDescPostReadDataById_xxxx

PID0, PID1and PID2 have all
post-handlers configured.

ApplDescPostReadDataById_zzzz

PID1 has a post-handler but since
the application doesn't know about
its reception - no post-handler will
be called.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

63 / 164

ReadDataByIdentifier or ReadDataByPeriodicIdentifier service. The data elements to be
grouped together can either be referenced by:

 a source data identifier, a position and size or,

 a memory address and a memory length, or,

 a combination of the two methods listed above using multiple requests to define the
single data element. The dynamically defined dataIdentifier will then contain a
concatenation of the data parameter definitions.

The definition of the dynamically defined data identifier can either be done via a single
request message or via multiple request messages. This allows for the definition of a
single data element referencing source identifier(s) and memory addresses. The server
has to concatenate the definitions for the single data element. A redefinition of a
dynamically defined data identifier can be achieved by clearing the current definition and
start over with the new definition.

At last the dynamically defined data identifier consists of a list of (non-dynamically) defined
data identifiers and memory area ranges that can be used in any combination.

For more information, see /ISO 14229-1/

9.2.1 Feature set

These are the supported subfunctions for service $2C (DynamicallyDefineDataIdentifier):

Subfunction Name Hex Value

defineByIdentifier 01

defineByMemoryAddress 02

clearDynamicallyDefinedDataIdentifier 03

9.2.2 API Functions

The reception of a Service $2C request will either delete a DynamicDataIdentifier (DDID)
or PeriodicDataIdentifier (PDID) by subfunction $03 or build a DDID/PDID by (several
times) using subfunction $01 and/or $02.

For subfunction $02 (defineByMemoryAddress) there is a new application callback
function (see chapter 12.6.13 “DynamicallyDefineDataIdentifier ($2C) (UDS) functions”). It
allows the application to permit or deny the extension of the DDID/PDID by accessing the
defined memory range. The callback function must check, if the requested memory area is
readable for the external Tester and if the current security state of the ECU permits the
extension of the DDID/PDID. See chapter 12.6.13.2 for the full set of checks to be
executed.

Please note that later, when reading the DDID by using service $22
(ReadDataByIdentifier), further (security) checks for each element of the DDID’s list are
executed to verify that e.g. the (then active) security state permits the reading of the
memory area or DID. These checks (of Service $22 and $23) are done in the traditional
sequence of Pre-, Main- and PostHandler.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

64 / 164

The reception of a Service $22 request starts a new context in CANdesc. Typically the
requested data can not be asked from the application by using one single callback function
but must be constructed sequentially by collecting data for each part of the DDID’s
definition list:

 A requested basic source data identifier (DID) is asked of the application by the
respective callback (as for Service $22 request), the result data is stripped down to
the defined position and size

 A memory address is read by its defined function (typically the same as used for a
Service $23 request) and the defined ‘size’ bytes are collected.

As recommended from /ISO 14229-1/ to prevent data consistency problems a recursive
definition of DDIDs is NOT supported.

The Service $22 response data is collected by splitting the service request into these basic
tasks, then running the well known internal functions that were defined for them, collect
their results and build up the Service $22 response. Therefore, each of the above tasks
starts a new context, executes the defined Pre-, Main- and Post-Handler where
Application-Callbacks get data, delivers its result and finally ends its context.

The recursive evaluation of DDIDs enforces the usage of MultiContext mode.

We would like to point out that the described operating sequence above is completely run
within CANdesc and totally transparent for the application except for the additional API
callback function. Using Service $2C or $2A switches CANdesc to MultiContext mode – if
your application isn’t prepared to support MultiContext mode (by using the defined macros)
you’ll get compiler errors about inconsistent argument lists.

9.2.3 Sequence Charts

Service $2C – Define a DDID

The following picture exemplifies the sequence of defining a DDID by several call of
Service DynamicallyDefineDataIdentifier ($2C).

In our example the first Service $2C request defines the DDID $F300 to return two
independent memory areas. For both areas the callback function
ApplDescCheckDynDidMemoryArea() is triggered and in this example the application
permits both accesses.

The consecutive Service $2C request extends the DDID $F300 by (some fragments of) the
existing DID $F010. As the here executed PreHandler does not set a Negative Response
Code, CANdesc considers the extension of the DDID valid and enlarges the DDID
definition.

A third Service $2C request tries to extend the DDID $F300 once more by another memory
area. In our example the call fails, as the specified memory area ($0000) is not valid for
this ECU. The service is negative responded and the previous DDID specification is left
untouched.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

65 / 164

Figure 9-9: Defining a DDID.

sd Define a new DDID v ia Serv ice $2C request

Tester CANdesc Application

Define DDID $F300 as

4-byte memory block at

address $ABCD and

5-byte block at $FEDC check for

Addr. $ABCD,

Size $04

check for

Addr. $FEDC,

Size $05

Extend the DDID $F300

by using

existing DID $F010

Further extention fails

due invalid address

value ($0000) in

request
check for Addr.

$0000 fails!

No Neg. RCode

set --> success

$2C 02 F300 12 ABCD04 FEDC05

ApplDescCheckDynDidMemoryArea

memBlockOk

ApplDescCheckDynDidMemoryArea

memBlockOk

PosResponse ($6C 02)

$2C 01 F300 F010 ...

PreHandler for DID F010

PosResponse ($6C 01)

$2C 02 F300 12 000004

ApplDescCheckDynDidMemoryArea

memBlockInvAddress

NegResponse ($7F 2C 31)

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

66 / 164

Service $22 – Read a DDID

The above defined DDID is now read by Service ReadDataByIdentifier ($22). Within
CANdesc the DDID is disassembled into its elements: One (virtual) request for the first
memory range, another request for the second memory range and finally a request for the
predefined DID $F010.

Figure 9-10: Reading a DDID.

Between CANdesc and the application the sequence looks same as if the tester would
have sent 3 requests: (1) ReadMemoryByAddress ($23) on first address range, (2)
ReadMemoryByAddress ($23) on second address range, and finally (3)
ReadDataByIdentifier ($22) on the DID $F010. Keep in mind: this is just a picture for the
succession of events/API-calls - these requests are not real, the messages are never seen
on the bus, the internal sequence is actually slightly different but for the application it looks
the same!

sd Read defined DDID v ia Serv ice $22 request

Tester Application

Read DDID $F300 that

was defined as:

 Addr ABCD, Size 04

 + Addr FEDC, Size 05

 + DID F010, Pos .., Size ..

CANdesc

execute virtual

$23 request

execute virtual

$23 request

execute virtual

$22 request ...

... and cut out the

required bytes

from the result

concatenate

the results

$22 F300

$23 12 ABCD04

PreHandler

MainHandler

PostHandler

$23 12 FEDC05

PreHandler

MainHandler

PostHandler

$22 F010

PreHandler

MainHandler

PostHandler

PosResponse ($62)

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

67 / 164

9.3 Read/Write Memory by Address (SID $23/$3D) (UDS)

Caution
This chapter does not apply to all ECU configurations. Only in special cases the
memory access support will be available!

The services $23 (ReadMemoryByAddress) and $3D (WriteMemoryByAddress) are
handled uniformly in CANdesc.

Basically the memory by address requests look like this:

The application need not concern itself with the details how the address and length are
formatted. If a valid FID is recognized, CANdesc will extract the address and length
information from the request and call an appropriate application callback.

See also:

 ApplDescReadMemoryByAddress (12.6.14.1)

 ApplDescWriteMemoryByAddress (12.6.14.2)

9.3.1 Tasks performed by CANdesc

To a certain degree CANdesc validates the request.

The basic format checks and service level state validation – this means e.g. security and
session validation – are performed before calling the application callback.

Service level state validation means that the request will be denied if all diagnostic
instances of service $23 or $3D are not allowed in the current state.

In case of WriteMemoryByAddress the application has linear access to the whole data
block to write.

9.3.2 Task to be performed by the Application

CANdesc currently does not provide state validation on format identifier level or memory
address / memory block level.

This means, that for example different memory addresses shall require different security
levels, the application will have to verify that the ECU currently is in an appropriate state to
access the requested memory area.

9.3.3 Repeated service calls

The repeated service call feature is available for the memory access callbacks.

Because they have a different prototype than a normal main handler, the usual API
‘DescStartRepeatedServiceCall (see 12.6.8.1)’ can not be used with the memory access
callbacks.

$23 FID length address

$3D FID length address data

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

68 / 164

Instead, a new API call ‘DescStartMemByAddrRepeatedCall (see 12.6.8.2)’ has been
added.

To abort the repeated service call, use the usual API.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

69 / 164

10 Generic Processing Notifications

If CANdesc UDS2012 is used, the feature “Generic Processing Notifications” is provided.
Upon activating this feature, CANdesc will notify the application when the processing of a
request starts and ends. Thereby, the notification mechanism is two-staged. On each
stage there are two application callbacks, one indication and one confirmation callback.
On the first stage “Manufacturer Notification Support”, CANdesc will notify the application
right before the processing of a fully received request starts, by calling the function
ApplDescManufacturerIndication(). When the processing of the request has been finished,
the response has been sent and all PostHandlers were called, CANdesc notifies the
application again by calling the function ApplDescManufacturerConfirmation().
The application callbacks of the second stage “Supplier Notification Support” are named
accordingly ApplDescSupplierIndication() and ApplDescSupplierConfirmation(). The
indication callback is called by CANdesc after it has verified that the requested service is
supported in the active session, security state and user states. The confirmation callback
is also called after the response has been sent, and all PostHandlers were called, but right
before the call to ApplDescManufacturerConfirmation(). Thus, the manufacturer and
supplier callbacks are called in a nested way. Figure 3-1 illustrates the order of the
notification callbacks related to the processing of a service request.



t

CANdesc

Application

Request

negative Response
Tester

Check SID

Check Session/Security

Prehandler

Mainhandler

positive Response

Posthandler

… Check Format

Manufacturer
Indication

Supplier
Indication

Supplier
Confirmation

Manufacturer
Confirmation

Figure 10-1 Call order of Manufacturer- and Supplier-Notficiation

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

70 / 164

10.1 Using dynamically defined data Identifier

The Service DynamicallyDefineDataIdentifier allows the definition of data identifiers with
other data identifiers or memory areas. These DDIDs can be read via service
ReadDataByIdentifier. When reading a DDID, for each source element a virtual request is
processed by CANdesc to get the information for this source element from the
application(see chapter 9.2). Because CANdesc processes the virtual requests equal to
normal requests, the notification functions will not only be called for the $22 request
containing the DDID, but also for each virtual request. The application has to consider
these additional calls, in case a DDID is requested.

Figure 10-2 shows an example of reading a DDID with service $22.

Figure 10-2 Read out a DDID with generic processing notifications

 sd Read defined DDID v ia Serv ice $22 request with Generic Processing Notifications

Tester ApplicationCANdesc

Read DDID $F300 that

was defined as:

 Addr ABCD, Size 04

+ Addr FEDC, Size 05

+ DID F010, Pos .., Size .. execute virtual

$23 request

...

Process further

virtual requests

...

Confirmation calls

for the request to

read the DDID

Nested confirmation

calls for the virtual

request

$22 F300()

Manufacturer Indication()

Supplier Indication()

$23 12 ABCD04()

Manufacturer Indication()

Supplier Indication()

PreHandler()

MainHandler()

PostHandler()

Supplier Confirmation()

Manufacturer Confirmation()

PosResponse ($62)

PostHandler()

Supplier Confirmation()

Manufacturer Confirmation()

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

71 / 164

11 Busy Repeat Responder Support (UDS2006 and UDS2012)

Busy Repeat Responder is a feature, that allowes CANdesc to respond to incoming
requests during the processing of another request. Such parallel requests are properly
received and in the next task cycle of CANdesc responded negatively with NRC
BusyRepeatRequest (0x21).

Figure 11-1 illustrates the functionality of the Busy Repeat Responder mechanism. During
the processing of Request 1, Requests 2 and 3 from Tester 2 are responded negatively
with NRC BusyRepeatRequest. After the processing of request 1 has finished and a
positive response has been sent, Request 4 from Tester 2 can be processed properly.

Figure 11-1 Illustration of the feature BusyRepeatResponder

Preconditions that must be fulfilled when using the feature Busy Repeat Responder:

> The TP must be a ISO TP from Vector with TP Class “Dynamic Normal Addressing
Multi TP” or “Dynamic Normal Fixed Addressing Multi TP”

> In the TP configuration the feature “Extended API – Overrun Reception” must be active

> In the TP configuration the number of Rx channels and Tx Channels must be > 1

> In case of Dynamic Normal Addressing Multi TP, a dispatcher needs to be
implemented in the application (for a detailed description see chapter 13.12)

 sd BusyRepeatResponder

Tester 1 Tester 2 CANdesc

CANdesc has received a

request from Tester 1 and

starts the processing

Parallel requests from

another tester are responded

negatively with NRC

BusyRepeatRequest

After CANdesc has finished

the processing of the request

from Tester 1, Requests from

Tester 2 can be processed

again.

Request 1()

Request 2()

Neg Response Busy()

Request 3()

Neg Response Busy()

Pos Response for Request 1()

Request 4()

Pos Response for Request 4()

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

72 / 164

Restrictions when using the feature Busy Repeat Responder:

> Only physical parallel requests are responded negatively. Functional parallel requests
will NOT get a negative response.

11.1 Configuration in GENy

To activate the feature Busy Repeat Responder use the setting in the CANdesc
component root (refer to chapter 6.2.1 Global CANdesc Settings).

Furthermore, the feature requires additional configuration in the TP component. The
feature “Extended API – Overrun Reception” must be enabled. This setting is available in
the group “Advanced Configuration”. To be able to receive another request while one is
under processing, the “Number of Rx Channels” and “Number of Tx Channels” must be at
least two. The number of channels can be configured in the TP Connection Groups:

Figure 11-2 Example of the “Number of Rx(Tx) Channels” settings

In case of “Dynamic Normal Addressing Multi TP” a dispatcher needs to be implemented in
the application. The description of the GENy configuration to integrate the dispatcher is
described in chapter 13.12 …use “Dynamic Normal Addressing Multi TP” with multiple
tester.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

73 / 164

12 CANdesc API

12.1 API Categories

12.1.1 Single Context

This API category is used if no parallel processing is necessary. This is typical for the ISO
14229 specification.

12.1.2 Multiple Context (only CANdesc)

This API category is used if parallel processing is necessary. This means not that
CANdesc can work with multiple instances, but only one functional request can be
processed parallel to a working physical request.

12.2 Data Types

The following standard data types are used in this document:

vuint8 Represents 8 bit unsigned integer value.

vsint8 Represents 8 bit signed integer value.

vuint16 Represents 16 bit unsigned integer value.

vsint16 Represents 16 bit signed integer value.

vuint32 Represents 32 bit unsigned integer value.

vsint32 Represents 32 bit signed integer value.

Table 12-1: standard data types

Additional data types used in this document are described in the corresponding function
description.

12.3 Global Variables

-

12.4 Constants

12.4.1 Component Version

The version of the CANdesc component consist of 3 parts in the following format:
MM.SS.BB,

Where:

 MM is the main version of the component,

 SS is the subversion of the component,

 BB is the bug-fix version of the component.

To get the current CANdesc version, the application could use the following shared data:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

74 / 164

Name Type Description

g_descMainVersion BCD Contains the main version part.

g_descSubVersion BCD Contains the subversion part.

g_descBugFixVersion BCD Contains the bug-fix version part.

Table 12-2: Version API data

Note: The version of the module is the same as the version of the generator’s DLL file.

12.5 Macros

12.5.1 Data exchange

The CANdesc provides a generic API for splitting a multi-byte (up to 4 bytes) variable to a
byte sequence with platform transparent access to each byte, and assembling a multi-byte
(up to 4 bytes) variable from a sequence of bytes.

12.5.1.1 Splitting 16 bit data

The following function could be used to get platform independent access to the
corresponding bytes of 16 bit data variable:

vuint8 DescGetHiByte(16BitData)

vuint8 DescGetLoByte(16BitData)

12.5.1.2 Splitting 32 bit data

The following function could be used to get platform independent access to the
corresponding bytes of 32 bit data variable:

vuint8 DescGetHiHiByte(32BitData)

vuint8 DescGetHiLoByte(32BitData)

vuint8 DescGetLoHiByte(32BitData)

vuint8 DescGetLoLoByte(32BitData)

12.5.1.3 Assembling 16 bit data

The application can create the 16 bit signal from a byte stream using the following API:

uint16 DescMake16Bit(hiByte, loByte)

where the hiByte, loByte are the corresponding bytes for the returned 16 bit data.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

75 / 164

12.5.1.4 Assembling 32 bit data

The application can create the 32 bit signal from a byte stream using the following API:

uint32 DescMake32Bit(HiHiByte, HiLoByte, LoHiByte, LoLoByte)

where the HiHiByte, HiLoByte, LoHiByte, LoLoByte are the corresponding bytes for the
returned 32 bit dat

12.6 Functions

12.6.1 Administrative Functions

12.6.1.1 DescInitPowerOn()

DescInitPowerOn

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescInitPowerOn (DescInitParam initParameter)

Multi Context

void DescInitPowerOn (DescInitParam initParameter)

Parameter

initParameter Manufacturer specific type, please refer ‘CANdesc: OEM
specifics’ document

Return code

- -

Functional Description

PowerOn Initialization of the CANdesc.

This function has to be called once before all other functions of CANdesc after PowerOn.

Pre-conditions

Correctly initialized CAN-driver via CanInitPowerOn() and TransportLayer via
TpInitPowerOn().

Call context

Background-loop level with global disabled interrupts

Particularities and Limitations

 DescInitPowerOn (initParameter) must be called after TpInitPowerOn() was called
(please, refer the /TPMC/ documentation), otherwise the reserved diagnostic
connection will be los

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

76 / 164

12.6.1.2 DescInit()

DescInit

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescInit (DescInitParam initParameter)

Multi Context

void DescInit (DescInitParam initParameter)

Parameter

initParameter Manufacturer specific type, please refer ‘CANdesc Part IV:
OEM specifics’ document

Return code

- -

Functional Description

Re-initialization of CANdesc.

This function can be called to re-initialize CANdesc (e.g. after WakeUp). All internal states
will be set to default, except the states in this initParameter (e.g. Session or
CommunicationControl).

Pre-conditions

CANdesc was once initialized via DescInitPowerOn ()

Call context

Background-loop level with global disabled

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

77 / 164

12.6.1.3 DescTask()

DescTask

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescTask (void)

Multi Context

void DescTask (void)

Parameter

- -

Return code

- -

Functional Description

The function DescTask() has to be called periodically (cycle time TDescCallCycle) by the

application.

Within the context of this function the interaction with the application is performed. In
addition the monitoring of the timings is done, therefore the accuracy of the timings
depends on the call cycle and on the accuracy of the calls.

Pre-conditions

-

Call context

Background-loop level or OSEK-OS Task. The task should have a lower or equal priority
than all other interaction to the CANdesc component.

Particularities and Limitations

 May not be called if the DescStateTask() and DescTimerTask() are called.



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

78 / 164

12.6.1.4 DescStateTask()

DescStateTask

Available since 4.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescStateTask (void)

Multi Context

void DescStateTask (void)

Parameter

- -

Return code

- -

Functional Description

Motivation: Using a single task function for timers and processing leads either to slow
processing or to faster timers which costs runtime for the ECU. The timers need very
stable cyclical call but the processing tasks may be done “as soon as possible” (i.e. using
OSEK to be assigned to lower priority task).

The function DescStateTask() has to be called periodically by the application. It is not a
timer task – it has no specific time period. As smaller this tasks call period is, so faster will
be the service processing.

This task function will process received request and to control the transmission of the
responses. Depending on the ECU requirements it is recommended to call this task as
soon as possible to avoid delays of the response (e.g. dynamically defined DID,
scheduled data, etc.), but take into account that within this task the corresponding
MainHandler will be executed too.

Pre-conditions

-

Call context

Background-loop level or OSEK-OS Task. The Task should have a lower or equal priority
than all other interaction to the CANdesc component.

Particularities and Limitations

 May not be called if the DescTask() is used (reentrancy is forbidden).



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

79 / 164

12.6.1.5 DescTimerTask()

DescTimerTask

Available since 4.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescTimerTask (void)

Multi Context

void DescTimerTask (void)

Parameter

- -

Return code

- -

Functional Description

Motivation: Using a single task function for timers and processing leads either to slow
processing or to faster timers which costs runtime for the ECU. The timers need very
stable cyclical call but the processing tasks may be done “as soon as possible” (i.e. using
OSEK to be assigned to lower priority task).

The function DescTimerTask() has to be called periodically by the application in the
configured task period. It can be called as slow as possible to free run time resources.

Pre-conditions

-

Call context

Background-loop level or OSEK-OS Task. The Task should have a lower or equal priority
than all other interaction to the CANdesc component.

Particularities and Limitations

 May not be called if the DescTask() is used. This will lead to either reentrancy
(consistency) problems or/and to timing issues.



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

80 / 164

12.6.1.6 DescGetActivityState()

DescGetActivityState

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

DescContextActivity DescGetActivityState (void)

Multi Context

DescContextActivity DescGetActivityState (vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

1. kDescContextIdle

2. kDescContextActiveRxBegin

3. kDescContextActiveRxEnd

4. kDescContextActiveProcess

5. kDescContextActiveProcessEnd

6. kDescContextActiveTxReady

7. kDescContextActiveTx

8. kDescContextActivePostProcess

1. There is currently no request processing (even
when scheduler is active).

2. Currently request reception is active.

3. Reception finished, request will be processed.

4. The request was received, is under processing
now

5. DescProcessingDone called waiting for data
before starting the transmission.

6. Ready for response transmission.

7. Transmission of the response is currently active.

8. Transmission/processing ended. Post-processing
will be performed.

Functional Description

Motivation: Sometimes the knowledge about the presence of a tester is necessary. A typical
use-case is to avoid the ECU from going into sleep mode.

A non-default session indicates that a tester is present. But how can this be done, if the ECU is
in the default session?

Due to that fact the ECU application can call the function DescGetActivityState() any time to
check if CANdesc has something to do or is in idle mode. This can be used e.g. to change the
state of the ECU sleep mode.

Note: The return value is bit coded and any senseful combination of the above mentioned
values is possible (e.g. kDescContextActiveRxBegin | kDescContextActivePostProcess).
Please check always with bit test (and operation) and not using the value comparison.

Pre-conditions

-

Call context

-

Particularities and Limitations

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

81 / 164

12.6.2 Multi Variant Configuration Functions

12.6.2.1 DescInitConfigVariant()

DescInitConfigVariant

Available since 6.00.00
Is Reentrant

Is callback

Prototype

Single Context and Multi Context

void DescInitConfigVariant (DescVariantMask varMask)

Parameter

varMask Contains the VSG(s) that shall be active additionally to the base
variant

Return code

- -

Functional Description

After CANdesc has been initialized via one of the APIs

DescInitPowerOn

or

DescInit;

the base variant will be only active (refer to the chapter 8 Multi Identity for more details). If
additionally other variants shall be activated, this API shall be called with a parameter
value that represents the variants (multiple variants can be OR-ed) that shall be activated.

The variant values that shall be used for building the API parameter value are located in
the desc.h file. The naming convention is as follows:

kDescVariant<variant/VSG qualifier>

Pre-conditions

-Multi- variant (VSG) mode is activated for CANdesc.

Call context

-

Particularities and Limitations

 Shall not interrupt the DescTask function.

 Best place to call this API is immediately after the CANdesc initialization API-call while
the interrupts are still locked.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

82 / 164

12.6.2.2 DescGetConfigVariant()

DescGetConfigVariant

Available since 6.00.00
Is Reentrant

Is callback

Prototype

Single Context and Multi Context

DescVariantMask DescGetConfigVariant (void)

Parameter

-

Return code

Variant mask Represents the bit-mapped value of the currently active variants
in the ECU.

Functional Description

This API returns the bit-mapped value of the currently active variants set in CANdesc.

The variant values that shall be used for checking the API return value are located in the
desc.h file. The naming convention is as follows:

kDescVariant<variant/VSG qualifier>

Pre-conditions

-Multi- variant (VSG) mode is activated for CANdesc.

Call context

- This API can be called from any call-context.

Particularities and Limitations

 -

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

83 / 164

12.6.3 Service Functions

12.6.3.1 DescSetNegResponse()

DescSetNegResponse

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescSetNegResponse (DescNegResCode errorCode)

Multi Context

void DescSetNegResponse (vuint8 iContext, DescNegResCode errorCode)

Parameter

iContext reference to the corresponding request context

errorCode the errorCode is the one of the provided error code constants
of CANdesc in the desc.h file with the following naming
convention:

kDescNrc<error name>.

Return code

- -

Functional Description

In the PreHandler or in the MainHandler function the application has the possibility of
forcing negative response with a certain negative response code for the current request
when it is necessary.

Pre-conditions

-

Call context

Within a ‘Service PreHandler’ function and within or after a ‘Service MainHandler’ function

Particularities and Limitations

 Once an error was set it can not be overwritten or reset.

 This function does not finish the processing of the request. It just sets a certain error
and after that the application must confirm that the request processing was completely
finished by calling DescProcessingDone().

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

84 / 164

12.6.3.2 DescProcessingDone()

DescProcessingDone

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescProcessingDone (void)

Multi Context

void DescProcessingDone (vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

- -

Functional Description

After completing the request execution the application must call the API function.

By calling this function, depending on the previous actions of the application the CANdesc
module will either send a response (positive/negative depending on the error state
machine) or no response will be send if the application/CANdesc decides that there must
be no response (please refer the Part III User Manual)

Pre-conditions

-

Call context

Within or after a ‘Service MainHandler’ function

Particularities and Limitations

12.6.4 Service callback functions

In CANdesc 6 the naming convention of the service callback function has changed due to
standardization reasons. In Table 12-3, the new naming convention can be found. Earlier
versions of CANdesc (< 6.0) used always Service-Qualifiers and Instance-Qualifiers from
the CDD file. Since CANdesc 6, for Service-Qualifiers always standardized names are
used, whereas for Instance-Qualifiers either a standardized name or the name from the
CDD file is used. The names of the service callback functions are based on the following
pattern:

ApplDesc[Pre|Post]<ServiceQualifier><DiagInstanceQualifier>

When migrating to CANdesc 6 the service callbacks have to be renamed according to the
new naming convention.

Service SubService Instance-Qualifier Service-Qualifier

0x10
0x01 Default

StartSession
0x02 Programming

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

85 / 164

Service SubService Instance-Qualifier Service-Qualifier

0x03 Extended

0x11

0x01 Hard

EcuReset

0x02 KeyOffOn

0x03 Soft

0x04 EnableRapidShutDown

0x05 DisableRapidShutDown

0x14 None DiagInfo Clear

0x19

0x01 RNODTCBSM ReadDtc

0x02 RDTCBSM

0x03 RDTCSSI

0x04 RDTCSSBDTC

0x05 RDTCSSBRN

0x06 RDTCEDRBDN

0x07 RNODTCBSMR

0x08 RDTCBSMR

0x09 RSIODTC

0x0A RSUPDTC

0x0B RFTFDTC

0x0C RFCDTC

0x0D RMRTFDTC

0x0E RMRCDTC

0x0F RMMDTCBSM

0x10 RMDEDRBDN

0x11 RNOMMDTCBSM

0x12 RNOOBDDTCBSM

0x13 ROBDDTCBSM

0x14 RDTCFDC

0x15 RDTCWPS

0x16 RDTCRDIDBDN

0x41 RWWHOBDNDTCBMR

0x42 RWWHOBDDTCBMR

0x55 RWWHOBDDTCWPS

0x22 Any Instance-Qualifier from CDD ReadDid

0x23 None MemoryByAddress Read

0x24 Any Instance-Qualifier from CDD ReadScalingDid

0x27
Odd Id

Instance-Qualifier from CDD
GetSeed

Even Id SendKey

0x28
0x00 EnableRxEnableTx

CommCtrl
0x01 EnableRxDisableTx

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

86 / 164

Service SubService Instance-Qualifier Service-Qualifier

0x02 DisableRxEnableTx

0x03 DisableRxDisableTx

0x2A

0x01

Instance-Qualifier from CDD

ReadDidSlow

0x02 ReadDidMed

0x03 ReadDidFast

0x04 ReadDidStop

0x2C

0x01

Instance-Qualifier from CDD

DynDefineByDid

0x02 DynDefineByAddr

0x03 DynDefineClear

0x2E Any Instance-Qualifier from CDD WriteDid

0x2F

0x00

Instance-Qualifier from CDD

IoCtrlRetCtrlToEcu

0x01 IoCtrlRstToDefault

0x02 IoCtrlFrzCurrState

0x03 IoCtrlShortTermAdj

0x31

0x01

Instance-Qualifier from CDD

RtnCtrlStart

0x02 RtnCtrlStop

0x03 RtnCtrlReqRes

0x34 None RequestDownload

0x35 None RequestUpload

0x36 None TransferData

0x37 None RequestTransferExit

0x3D None MemoryByAddress Write

0x3E 0x00 TesterPresent Send

0x84 None SecuredDataTransmission

0x85
0x01 Enable

ControlDtcSetting
0x02 Disable

0x86

0x00 Stop

Roe

0x01 OnDtcStatChg

0x02 OnTmrInt

0x03 OnChgOfDid

0x04 ReportActEv

0x05 Start

0x06 Clear

0x07 OnCompOfVal

0x40 StStop

0x41 StOnDtcStatChg

0x42 StOnTmrInt

0x43 StOnChgOfDid

0x44 StReportActEv

0x45 StStart

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

87 / 164

Service SubService Instance-Qualifier Service-Qualifier

0x46 StClear

0x47 StOnCompOfVal

0x87

0x01 VerifyFixedBaudrate

LinkControl 0x02 VerifySpecificBaudrate

0x03 TransitionBaudrate

Table 12-3 Naming convention of service callback functions in CANdesc 6

12.6.4.1 Service PreHandler

ApplDescPre<Service-Qualifier + Instance-Qualifier>>

Available since 2.00.00
Is callback

Prototype

Single Context

void ApplDescPre<Service-Qualifier + Instance-Qualifier> (void)

Multi Context

void ApplDescPre<Service-Qualifier + Instance-Qualifier> (vuint8 iContext)

Parameter

iContext the current request context location

Return code

- -

Functional Description

The PreHandler is executed before the Service MainHandler is called. In the PreHandler,
the application can hook any (especially application-specific) state validations. One
PreHandler implementation may be shared with different service instances (only
CANdesc).

To allow quite complex operations to take place, the application has access to the request
data using the context data structure (if given).

Pre-conditions

Must be configured to ‘User’ in attribute ‘PreHandlerSupport’’

Call context

From DescTask()

Particularities and Limitations

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

88 / 164

12.6.4.2 Service MainHandler

ApplDesc<Service-Qualifier + Instance-Qualifier>

Available since 2.00.00
Is callback

Prototype

Single Context

void ApplDesc<Service-Qualifier + Instance-Qualifier> (DescMsgContext* pMsgContext)

Multi Context

void ApplDesc<Service-Qualifier + Instance-Qualifier> (DescMsgContext* pMsgContext)

Parameter

pMsgContext
typedef struct

{

 DescMsg reqData;

 DescMsgLen reqDataLen;

 DescMsg resData;

 DescMsgLen resDataLen;

 DescMsgAddInfo msgAddInfo;

 vuint8 iContext;

 t_descUsdtNetBus busInfo;

} DescMsgContext;

DescMsgAddInfo
 DescBitType reqType :2; /* 0x01: Phys 0x02: Func */

 DescBitType resOnReq :2; /* 0x01: Phys 0x02: Func */

 DescBitType suppPosRes:1; /* 0x00: No 0x01: Yes */

Read access pMsgContext->reqData
pointer to the first byte of the already extracted request data.

pMsgContext->reqDataLen
length of the extracted request data.

pMsgContext->iContext
the current request context location
(used only as a handle - DO NOT MODIFY).

pMsgContext->msgAddInfo.reqType
the current request addressing method. Could be either
‚kDescFuncReq’ or ‚kDescPhysReq’ (bitmapped).

pMsgContext->msgAddInfo.suppPosRes
if set, no positive response will be sent. (UDS only).

pMsgContext->busInfo

the current request communication information (i.e. driver type (CAN,
MOST, FlexRay, etc.), addressing information, communication channel
number, tester address (if applicable) etc.

Write access pMsgContext->resData
pointer to the first position where the response data can be written.

pMsgContext->resDataLen
length of the written data.

pMsgContext->msgAddInfo.resOnReq
can be used to disable the response transmission on the current
request. If set to ‘0’ no response will be transmitted. Physical and
function can be set separately (bitmapped).

Return code

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

89 / 164

- -

Functional Description

The MainHandler processes the service request.

 Perform length validation for varying length information of request.

 Disassemble any data received with the request telegram and process it,.

 Assemble any data to be send with the response and update current response
length.

 Confirm that the processing is finished.

Pre-conditions

Must be configured to ‘User’ in attribute ‘MainHandlerSupport’

Call context

From DescTask()

Particularities and Limitations

 If used as MainHandler for Protocol Services, the Protocol-Service-Qualifier is used
instead

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

90 / 164

12.6.4.3 Service PostHandler

ApplDescPost<Service-Qualifier + Instance-Qualifier>

Available since 2.00.00
Is callback

Prototype

Single Context

void ApplDescPost<Service-Qualifier + Instance-Qualifier> (vuint8 status)

Multi Context

void ApplDescPost<Service-Qualifier + Instance-Qualifier> (vuint8 iContext,

vuint8 status)

Parameter

iContext the current request context location

status (bit-coded) kDescPostHandlerStateOk
The positive response was transmitted successfully

kDescPostHandlerStateNegResSent
It was a negative response

kDescPostHandlerStateTxFailed
A transmission error occurred

Return code

- -

Functional Description

Any state transition may not be performed before the current service is finished
completely (the last frame of the response is sent successfully).

The PostHandler is executed after a confirmation of the message transmission is received
and is designated for state adaptation – all other things are already done when the
PostHandler is called.

Pre-conditions

Must be configured to ‘User’ in attribute ‘PostHandlerSupport’

Call context

From DescTask()

Particularities and Limitations

 If used as PostHandler for Protocol Services, the Protocol-Service-Qualifier is used
instead

 You can override the given name extension (Service-Qualifier + Instance-Qualifier) by
using the ‘PostHandlerOverrideName’.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

91 / 164

12.6.5 User (Unknown) Service Handling

In some cases the ECU shall support a service which is not described in the common way
for CANdesc (by means of CANdelaStudio/GENtool). With a little bit more effort inside the
application than for the “known” services the ECU is still be able to support those user
defined services. The effort comes form the fact that CANdesc knows nothing about this
service (e.g. session, security or other states described in the CDD configuring CANdesc,
addressing methods allowed for those services, etc.) and therefore the application must do
this work for each user defined service by itself. In fact for CANdesc there is only one
“unknown” service and it is up to the application to differentiate between multiple unknown
service(s).

Attention: This feature is available since version 2.11.00 of CANdesc(Basic).

12.6.5.1 How it works

If the feature “Support Generic User Service” is enabled in the GENtool CANdesc uses
following handling:

- if a service was not recognized by its SID, before the automatic negative
response transmission will be sent, the application will be called (see
12.6.5.2 ApplDescCheckUserService) to check this SID too. If it can not
recognize it as a valid one the usual negative response will be sent.

- If the application has accepted the SID, then a special “user service”
MainHandler will be called (see 12.6.5.4 Generic User Service MainHandler).

- If in GENtool “Support Generic User Service PostHandler” is set, after the
request processing has been accomplished, a special “user service”
PostHandler will be called (see 12.6.5.5 Generic User Service PostHandler).

Note:

- Since CANdesc doesn’t distinguish user defined services, a special API was
designed to get the application the opportunity to dispatch among the SIDs
(in MainHandler and in the PostHandler).

- The user defined services are processed on service id level which means the
application shall dispatch and do the whole format check of these requests.
The state management shall be performed bye application, too.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

92 / 164

12.6.5.2 ApplDescCheckUserService()

ApplDescCheckUserService

Available since 2.11.00
Is callback

Prototype

Single Context

vuint8 ApplDescCheckUserService (DescMsgItem sid)

Multi Context

vuint8 ApplDescCheckUserService (DescMsgItem sid)

Parameter

sid The service identifier which is currently under processing.

Return code

1. kDescOk

2. kDescFailed

1. Return this value if the service id is a “user defined” one.

2. Return this value if the service id is unknown for the
application too.

Functional Description

The currently received request contains an unknown for CANdesc service Id. Within this
function the ECU application has to decide immediately if the SID is one of the user
defined or not. Depending on the return value, CANdesc will process further this request
or will reject it by sending negative response ‘ServiceNotSupported’.

Pre-conditions

The “Support Generic User Service” option was enabled in the GENtool configuration.

Call context

From DescTask() (in KWP diagnostics also from RxInterrupt).

Particularities and Limitations

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

93 / 164

12.6.5.3 DescGetServiceId()

DescGetServiceId

Available since 2.11.00
Is Reentrant

Is callback

Prototype

Single Context

DescMsgItem DescGetServiceId (void)

Multi Context

DescMsgItem DescGetServiceId (vuint8 iContext)

Parameter

iContext The current request context location

Return code

DescMsgItem The service id which is currently under processing.

Functional Description

Reports the service id of the currently processed user-service request.

Pre-conditions

The “Support Generic User Service” option was enabled in the GENtool configuration.

Call context

From DescTask()

Particularities and Limitations

 This function may be called at any time within a diagnostic request life cycle starting at
the call of the MainHandler and ending by the PostHandler (if configured) or (if none
configured) by calling DescProcessingDon

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

94 / 164

12.6.5.4 Generic User Service MainHandler

ApplDescUserServiceHandler

Available since 2.11.00
Is callback

Prototype

Single Context

void ApplDescUserServiceHandler (DescMsgContext* pMsgContext)

Multi Context

void ApplDescUserServiceHandler (DescMsgContext* pMsgContext)

Parameter

pMsgContext Refer the section 12.6.4.2 Service MainHandler for details about this
parameter.

Read Access pMsgContext->reqData
pointer to the first byte after the service Id.

The other members of the parameter are described in 12.6.4.2 Service
MainHandler

Write access pMsgContext->resData
pointer to the first byte after the response SID, where the data (incl. sub-
parameters) will be written.

The other members of the parameter are described in 12.6.4.2 Service
MainHandler

Return code

- -

Functional Description

This MainHandler is called for all unknown service requests at service id level, so the
application has to do following:

 Perform service id dispatching (if more than one user defined service shall be
used).

 Perform length validation for varying length information of request.

 Perform parameter (if any) validation.

 Disassemble any data received with the request telegram and process it.

 Assemble any data to be send with the response and update current response
length

 Confirm that the processing is finished.

Pre-conditions

The “Support Generic User Service” option was enabled in the GENtool configuration.

Call context

From DescTask()

Particularities and Limitations

 Refer the section 12.6.4.2 Service MainHandler.

 DescGetServiceId() may be called here to dispatch the SID of the currently processed
user service (refer 12.6.5.3 DescGetServiceId

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

95 / 164

12.6.5.5 Generic User Service PostHandler

ApplDescPostUserServiceHandler

Available since 2.11.00
Is callback

Prototype

Single Context

void ApplDescPostUserServiceHandler (vuint8 status)

Multi Context

void ApplDescPostUserServiceHandler (vuint8 iContext, vuint8 status)

Parameter

iContext, status Refer 12.6.4.3 Service PostHandler for information.

Return code

- -

Functional Description

The functionality of the user service PostHandler is the same as the one of the normal
service PostHandler. Refer 12.6.4.3 Service PostHandler for more details.

Pre-conditions

The “Support Generic User Service PostHandler” option was enabled in the GENtool
configuration.

CANdesc version >= 2.11.00

Call context

From DescTask()

Particularities and Limitations

 Refer the section 12.6.4.3 Service PostHandler for information.

 DescGetServiceId() may be called here to dispatch the SID of the currently post-
processed user service (refer 12.6.5.3 DescGetServiceId

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

96 / 164

12.6.6 Session Handling

12.6.6.1 ApplDescCheckSessionTransition()

ApplDescCheckSessionTransition

Available since 2.00.00
Is callback

Prototype

Single Context

void ApplDescCheckSessionTransition (DescStateGroup newState, DescStateGroup

formerState)

Multi Context

void ApplDescCheckSessionTransition (vuint8 iContext, DescStateGroup newState,

DescStateGroup formerState)

Parameter

iContext the current request context location

newState the CANdesc component has change to this session state

formerState the CANdesc component has change from this session state

Return code

- -

Functional Description

This hook function will be called, while session request is received (SID $10). If the
application wants to discard this request, an error must be set (via
DescSetNegResponse()).

The application always has to confirm this hook function via
DescSessionTransitionChecked().

Both above functions can be called also outside of the context of this function (e.g.
application task waiting for results form an I/O port). CANdesc will send RCR-RP
response as long as the application delays the confirmation for the session transition.

In some cases the application has to know whether the SPRMIB in the request was set or
not. Since this API call does not contain this information, a dedicated API in CANdesc
provides it: DescIsSuppressPosResBitSet ().

Pre-conditions

At least one DiagnosticSessionControl service must be configured to ‘OEM’ in attribute
‘MainHandlerSupport’

Call context

From DescTask()

Particularities and Limitations

 Call the API function DescSessionTransitionChecked() to end the service processing



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

97 / 164

12.6.6.2 DescSessionTransitionChecked()

DescSessionTransitionChecked

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescSessionTransitionChecked (void)

Multi Context

void DescSessionTransitionChecked (vuint8 iContext)

Parameter

iContext the current request context location

Return code

- -

Functional Description

After the application has finished the processing in the hook function
ApplDescCheckSessionTransition() this function must be called.

Pre-conditions

At least one DiagnosticSessionControl service must be configured to ‘OEM’ in attribute
‘MainHandlerSupport’

Call context

Within or after a ‘ApplDescCheckSessionTransition()’ function

Particularities and Limitations

 If this function will be called late, the CANdesc component sends automatically the
RCR-RP responses

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

98 / 164

12.6.6.3 DescIsSuppressPosResBitSet ()

DescIsSuppressPosResBitSet

Available since 5.07.14
Is Reentrant

Is callback

Prototype

Single Context

DescBool DescIsSuppressPosResBitSet (void)

Multi Context

DescBool DescIsSuppressPosResBitSet (vuint8 iContext)

Parameter

iContext the current request context location

Return code

kDescTrue

kDescFalse

The SPRMIB is set.

The SPRMIB is NOT set.

Functional Description

This API can be always called while a diagnostic service processing is ongoing to get the
information about the SPRMIB state. All main-handlers do contain this information already
in the pMsgContext parameter so use it instead of this API.

In some other cases the application does not have access to the pMsgContext, and there
the API can be used.

Pre-conditions

Only for UDS configurations.

May be called only while a diagnostic service processing is ongoing. Otherwise invalid
data can be reported.

Call context

Any.

Particularities and Limitations



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

99 / 164

12.6.6.4 ApplDescOnTransitionSession()

ApplDescOnTransitionSession

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void ApplDescOnTransitionSession (DescStateGroup newState,

 DescStateGroup formerState)

Multi Context

void ApplDescOnTransitionSession (DescStateGroup newState,

 DescStateGroup formerState)

Parameter

newState the CANdesc component has change to this session state

formerState the CANdesc component has change from this session state

Return code

- -

Functional Description

After the positive response of a SessionControl request the session will transit to the
requested session. This function informs the application that such a transition occurs.

Pre-conditions

-

Call context

From DescTask()

interrupts might be disabled

Particularities and Limitations

 Only informational function

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

100 / 164

12.6.6.5 DescSetStateSession()

DescSetStateSession

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescSetStateSession (DescStateGroup newSession)

Multi Context

void DescSetStateSession (DescStateGroup newSession)

Parameter

newSession the CANdesc component will change to this session state

Return code

- -

Functional Description

By this function the state of the SessionState-group can be changed by the ECU
application. The transition notification function ‘ApplDescOnTransitionSession’ will be
called to notify the application about the new session.

Pre-conditions

-

Call context

-

Particularities and Limitations

 Refer the section 12.6.11.2 "DescSetState<StateGroup>()” for more details.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

101 / 164

12.6.6.6 DescGetStateSession()

DescGetStateSession

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

currentSession DescGetStateSession (void)

Multi Context

currentSession DescGetStateSession (void)

Parameter

-

Return code

currentSession

Functional Description

This function returns the current session state. Since the states are bit-coded the
evaluation expressions may be optimized for multiple use cases.

Example: Code execution only when either default or extended session is active.
lState = DescGetStateSession();

if ((lState & (kDescStateSession<Default>) | kDescStateSession<Extended>)) != 0)

{

 /*execute code*/

}

Pre-conditions

-

Call context

-

Particularities and Limitations

 Refer the section 12.6.11.1 “DescGetState<StateGroup>()” for more details.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

102 / 164

12.6.6.7 DescGetSessionIdOfSessionState

DescGetSessionIdOfSessionState

Available since 3.00.00
Is Reentrant

Is callback

Prototype

Any Context

DescMsgItem DescGetSessionIdOfSessionState (DescStateGroup sessionState)

Parameter

sessionState - Must be one of the valid session states (i.e. the value of the
API DescGetStateSession()).

Return code

DescMsgItem - Is the corresponding session identifier value.

Functional Description

This function provides a conversion from a session state to its corresponding session
identifier (e.g. calling this function with parameter kDescStateSessionDefault will return
0x01).

Pre-conditions

-

Call context

-

Particularities and Limitations



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

103 / 164

12.6.7 CommunicationControl Handling

This API is provided, if the ECU supports the serviceCommunicationControl (UDS) or
service 0x28/0x29 Dis-/EnableNormalMessageTransmission (KWP).

12.6.7.1 ApplDescCheckCommCtrl()

ApplDescCheckCommCtrl

Available since 2.00.00
Is callback

Prototype

Single Context

void ApplDescCheckCommCtrl (DescOemCommControlInfo* commControlInfo)

Multi Context

void ApplDescCheckCommCtrl (vuint8 iContext,

 DescOemCommControlInfo* commControlInfo)

Parameter

iContext The current request context location

commControlInfo OEM dependent

Return code

- -

Functional Description

The execution of this service is completely done within the CANdesc component. This
hook function can be used to permit the application to reject the execution under some
circumstance. If the application wants to discard this request, an error must be set (via
DescSetNegResponse()).

The application always has to confirm this hook function (via DescCommCtrlChecked()).

Pre-conditions

The CommunicationControl service must be activated and the attribute
‘MainHandlerSupport’ has to be set to ‘OEM’

Call context

From DescTask()

Particularities and Limitations

 If the API function DescCommCtrlChecked() will be not called, the service processing
will not end

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

104 / 164

12.6.7.2 DescCommCtrlChecked()

DescCommCtrlChecked

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescCommCtrlChecked (void)

Multi Context

void DescCommCtrlChecked (vuint8 iContext)

Parameter

iContext the current request context location

Return code

- -

Functional Description

The CANdesc component calls a hook function to check for the execution permission of
the CommunicationControl service. Within or after this hook function
(ApplDescCheckCommCtrl()) the application can set an error
(DescSetNegResponse()) to reject the request. This function is used to terminate the
hook function ApplDescCheckCommCtrl().

Pre-conditions

The CommunicationControl service must be activated and the attribute
‘MainHandlerSupport’ has to be set to ‘OEM’

Call context

Within or after ApplDescCheckCommCtrl()

Particularities and Limitations



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

105 / 164

12.6.8 Periodic call of ‘Service MainHandler’

12.6.8.1 DescStartRepeatedServiceCall()

DescStartRepeatedServiceCall

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescStartRepeatedServiceCall (DescMainHandler descMainHandler)

Multi Context

void DescStartRepeatedServiceCall (vuint8 iContext, DescMainHandler descMainHandler)

Parameter

descMainHandler Reference to a function. The function prototype must be based
on a ‘Service MainHandler’.

iContext The current request context location

Return code

- -

Functional Description

The application can use this function to get a periodic call to the specified function (in the
parameter) from the CANdesc component.

It is possible to use the same ‘Service MainHandler’ function as it is called in.

Pre-conditions

Call context

Within or after a ‘Service MainHandler’ function

Particularities and Limitations

 CANdesc can do no validation, if this pointer is valid.

 Is the parameter NULL, the periodic calls will get stopped.

 The function is called in the same cycle time (context) as the DescTask()

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

106 / 164

12.6.8.2 DescStartMemByAddrRepeatedCall()

DescStartMemByAddrRepeatedCall

Available since 5.06.04
Is Reentrant

Is callback

Prototype

Single Context

void DescStartMemByAddrRepeatedCall ()

Multi Context

void DescStartMemByAddrRepeatedCall (vuint8 iContext)

Parameter

iContext The current request context location

Return code

- -

Functional Description

The application can use this function to get a periodic call to the current Read/Write
memory by address handler.

Pre-conditions

Call context

Within ApplDescReadMemoryByAddress or ApplDescWriteMemoryByAddress.

Particularities and Limitations

 The memory access handler is called in the same cycle time (context) as the
DescTask()

12.6.9 Ring Buffer Mechanism

The ring-buffer option can be used to save RAM when some responses are quite long and
reserving such space of RAM is impossible. In contrast to the linear responses, where the
response data will be first written and then the transmission to the tester will be initiated,
the ring-buffer concept starts a transmission as soon as it has either the whole data (for
short [single frame] responses) or at least enough data to fill a first-frame of a multi-frame
transmission. Once the ring buffer has been activated and the response transmission
initiated, the application must supply enough data to keep the transmission away from lack
of data. In multiple PID mode, the application can decide in each PID main handler to use
the ring buffer or not. However, if one of the PIDs has dynamic length, the ring buffer
mechanism can not be used for any PID in the list.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

107 / 164

Note
The ring buffer should only be used for long responses, because using the ring buffer
instead of the linear buffer causes a runtime overhead.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

108 / 164

12.6.9.1 DescRingBufferStart()

DescRingBufferStart

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescRingBufferStart (void)

Multi Context

void DescRingBufferStart (vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

- -

Functional Description

After completing the request validation the application can decide (in runtime), if the ring-
buffer mechanism should be used or not.

By calling this function, the decision is made to use the ring-buffer. Otherwise
DescProcessingDone() should be called, after filling the response data (in a linear way).
Either DescProcessingDone() or DescRingBufferStart() will finish the response handling.

Depending on the previous actions of the application the CANdesc module will either send
a response (positive/negative depending on the error state machine) or no response will
be send if the application/CANdesc decides that there must be no response (please refer
the Part III User Manual).

The transmission of the positive response will not start immediately. The application has to
fill the ring-buffer first. If the ring-buffer has enough data, the transmission will be started
(internally).

Pre-conditions

- ring-buffer has been enabled in the configuration

Call context

Within or after a ‘Service MainHandler’ function

Particularities and Limitations

 This API must not be called from any of the other handler type (Pre- or PostHandlers)

 Either DescProcessingDone() or DescRingBufferStart() must be used to finish the
response handling.

 Total response length must be written before!

 No response data must be written before!

 This function must not be called in interrupt context

 Limitation: Until CANdesc version 2.13.00 it was not possible to use the Ring-Buffer in
‘Multiple PID’ services (as described in section 9.1.3 Multiple PID mode)

 UDS limitation: Always check the SPRMIB prior starting the ring-buffer. If this bit is
set, the ring-buffer shall not be started. Instead DescProcessingDone() must be called
(see 13.6).

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

109 / 164

12.6.9.2 DescRingBufferWrite()

DescRingBufferWrite

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

vuint8 DescRingBufferWrite (DescMsg data, DescMsgLen dataLength)

Multi Context

vuint8 DescRingBufferWrite (vuint8 iContext, DescMsg data, DescMsgLen dataLength)

Parameter

iContext Reference to the corresponding request context

DescMsg Pointer to application data, which should be copied into ring-
buffer.

DescMsgLen Amount of data, which should be copied (from pointer data) into
ring-buffer.

Return code

vuint8 kDescOk
If the copy process was successful

kDescFailed
if the data are not copied into the ring-buffer

Functional Description

The application writes data into the ring-buffer by this function. It is not necessary that the
application must write the data in the context of a special API function.

The write order is always linear! The first written byte is the first byte in the response
message.

Pre-conditions

- ring-buffer has been enabled in the configuration;

- DescRingBufferStart() must be called first, to activate the ring-buffer mechanism.

Call context

- This API shall not interrupt the DescTask. Required for the case the currently ongoing
transmission is interrupted due to a communication error, and the application still writes
into the buffer.

Particularities and Limitations

 dataLength must be lower or equal to the ring-buffer size, else the function will

always fail

 CANdesc has already filled the first bytes (SID, etc.) into the ring-buffer. So in the first
call of DescRingBufferWrite() the dataLength must lower as the buffer size + these
byte

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

110 / 164

12.6.9.3 DescRingBufferCancel()

DescRingBufferCancel

Available since 5.01.00
Is Reentrant

Is callback

Prototype

Single Context

void DescRingBufferCancel (void)

Multi Context

void DescRingBufferCancel (vuint8 iContext)

Parameter

iContext Reference to the corresponding request context

Return code

- -

Functional Description

The application may call this API once the a data acquisition error has been occurred after
the ring-buffer has been activated via DescRingBufferStart().

CANdesc will automatically determine the appropriate action depending on its current
internal state:

- if the response data transmission has not been started yet, a negative
response will be sent back.

- If the response transmission has been started – a transmission interrupt
will occur – the tester will not get a complete response.

Pre-conditions

- ring-buffer has been enabled in the configuration

- DescRingBufferStart() must be called before to activate the ring-buffer mechanism

Call context

-

Particularities and Limitations



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

111 / 164

12.6.9.4 DescRingBufferGetFreeSpace()

DescRingBufferGetFreeSpace

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

DescMsgLen DescRingBufferGetFreeSpace (void)

Multi Context

DescMsgLen DescRingBufferGetFreeSpace (vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

DescMsgLen The amount of free space/bytes in the ring-buffer.

Functional Description

This function returns the amount of free space/bytes in the ring-buffer.

Pre-conditions

- ring-buffer has been enabled in the configuration

- DescRingBufferStart() must be called before to activate the ring-buffer mechanism

Call context

-

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

112 / 164

12.6.9.5 DescRingBufferGetProgress()

DescRingBufferGetProgress

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

DescMsgLen DescRingBufferGetProgress (void)

Multi Context

DescMsgLen DescRingBufferGetProgress (vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

DescRingBufferProgress Current byte position in the whole response.

Functional Description

This function returns the progress of the copy process.

Pre-conditions

- ring-buffer has been enabled in the configuration

- DescRingBufferStart() must be called before to activate the ring-buffer mechanism

Call context

-

Particularities and Limitations



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

113 / 164

12.6.10 Signal Interface of CANdesc

CANdesc will provide a signal interface to the ECU application. This can help the ECU
application to assemble the response automatically. No further code changes are
necessary, if a signal will move or change its size.

The current implementation has only support for a synchronous signal interface. This
means the ECU application has to provide the signal value within the call/context of the
Signal Handler function (while reading) or to write thewithin the call/context of the Signal
Handler function (while writing).

12.6.10.1 ApplDesc<Signal-Handler>()

ApplDesc<Signal-Handler>

Available since 2.00.00
Is callback

Prototype

Single Context

- ApplDesc<Service-Qualifier + Data-Object-Qualifier + Instance-Qualifier> (-)

Multi Context

- ApplDesc<Service-Qualifier + Data-Object-Qualifier + Instance-Qualifier> (-)

Parameter

vuint8, vsint8,

vuint16, vsint16,

vuint32, vsint32,

DescMsg (vuint8*)

Available for write services.

Type depend on signal type

DescMsg (vuint8*) Available for read services and signals > 32 bit (N bit)

Return code

vuint8, vsint8,

vuint16, vsint16,

vuint32, vsint32

Available for read services.

Type depend on signal type.

Functional Description

A Signal Handler is generated if the Service MainHandler is configured to be generated. In
this case, writing Signal Handlers are generated for all dataObjects transported with the
request and reading Signal Handlers are generated for all dataObjects transported with
the response (read/write from application point of view).

The data type of the Signal Handler argument depends on the dataObject which is to be
processed.

Pre-conditions

Must be configured to ‘generated’ in attribute ‘MainHandlerSupport’

Call context

From DescTask()

Particularities and Limitations

 You can override the given name extension (Service-Qualifier + Data-Object-Qualifier
+ Instance-Qualifier) by using the SignalHandlerOverrideName.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

114 / 164

12.6.10.2 Configuration of direct signal access

 Application variable for direct access (default = not set)
If this variable is specified, an access to the given external (= application) variable is
generated. Nothing has to be done by the application. The external variable must
be defined inside the application.

 SignalHandlerOverrideName (default = not set).
You can adapt the name of the Signal Handler setting this value. By using this
“Override Name” it is also possible to reuse an already existing Signal Handler

12.6.11 State Handling (CANdesc only)

12.6.11.1 DescGetState<StateGroup>()

DescGetState<StateGroup>

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

DescStateGroup DescGetState<StateGroup-Qualifier> (void)

Multi Context

DescStateGroup DescGetState<StateGroup-Qualifier> (void)

Parameter

- -

Return code

DescStateGroup The current state of the state group

Functional Description

This function returns the current session state. Since the states are bit-coded the
evaluation expressions may be optimized for multiple use cases.

Example: Code execution only when either the current state of this group is either state X
or state Y.
lState = DescGetState< StateGroupQualifier >();

if ((lState & (kDescState< StateGroupQualifier ><StateQualifier_X>) |

 kDescState< StateGroupQualifier ><StateQualifier_Y>)) != 0)

{

 /*execute code*/

}

Pre-conditions

-

Call context

-

Particularities and Limitations

 For each state of a state-group a constant is defined in desc.h:
kDescState<StateGroup-Qualifier><StateQualifier>

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

115 / 164

12.6.11.2 DescSetState<StateGroup>()

DescSetState<StateGroup>

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void DescSetState<StateGroup-Qualifier> (DescStateGroup newState)

Multi Context

void DescSetState<StateGroup-Qualifier> (DescStateGroup newState)

Parameter

DescStateGroup the state in which the state group should be changed

Return code

- -

Functional Description

By this function the state of the state-group can be changed by the ECU application. The transition
notification function ‘ApplDescOnTransition< StateGroupQualifier >’ will be called to notify the
application about the new state.

Example:

 DescSetState<StateGroupQualifier>(kDescState<StateGroupQualifier><StateQualifier>);

This line will force CANdesc to change the state of the given state group to the new one.

Pre-conditions

-

Call context

-From a task with priority lower or equal to the DescTask.

Particularities and Limitations

 For each state of a state-group a constant will be defined in desc.h:
kDescState<StateGroup-Qualifier><State-Qualifier>

 The ApplDescOnTransition<StateGroup-Qualifier>() notification function is called in any
case. Also if the newState is the same as the current stat

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

116 / 164

12.6.11.3 ApplDescOnTransition«StateGroup»()

ApplDescOnTransition«StateGroup»

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void ApplDescOnTransition<StateGroup-Qualifier>(DescStateGroup newState,

 DescStateGroup formerState)

Multi Context

void ApplDescOnTransition<StateGroup-Qualifier> (DescStateGroup newState,

 DescStateGroup formerState)

Parameter

newState the CANdesc component has changed to this session state

formerState the CANdesc component has changed from this session state

Return code

- -

Functional Description

This notification function will be called each time a transition has happened.

Pre-conditions

-

Call context

From DescTask()

interrupts might be disabled

Particularities and Limitations

 For each state of a state-group a constant will be defined in desc.h:
kDescState<StateGroup-Qualifier><StateName-Qualifier>

 For some exceptions (e.g. Session) the newState can be the same as the formerState.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

117 / 164

12.6.12 Force “Response Correctly Received - Response Pending” transmission

In some cases it is useful for the application to be sure that it has enough time to
accomplish a process without causing the tester to get response timeout. In such cases
the application can use the “force RCR-RP” mechanism of CANdesc, which prevents
timeout between the tester and the ECU application.

How it works:

This feature is mostly applicable when a FlashBootLoader (FBL) is available for the ECU.
Before starting it, the application wants to assure that there is enough time to perform
reset and activate the FBL before the tester gets response timeout. The RCR-RP
mechanism notifies the tester that some action is ongoing and so resets the timeout timer
in the tester.

To transmit a ‘Response Correctly Received - Response Pending’ response the application
has to call the DescForceRcrRpResponse() function. To be sure this response is
transmitted, the application has to wait for the transmission confirmation of this forced
RCR-RP response (the function ApplDescRcrRpConfirmation). Depending on its
transmission status parameter the application can decide how the processing shall
continue (a jump to FBL or to close the request processingth negative response).

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

118 / 164

12.6.12.1 DescForceRcrRpResponse()

DescForceRcrRpResponse

Available since 2.11.00
Is Reentrant

Is callback

Prototype

Single Context

void DescForceRcrRpResponse(void)

Multi Context

void DescForceRcrRpResponse(vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

- -

Functional Description

Calling this function the application can force CANdesc to send immediately (not later than
the next call of DescTask() function) a RCR-RP response.

Pre-conditions

CANdesc was configured to use this option (enabled in the GENtool).

Call context

Task or interrupt.

Particularities and Limitations

 This function can be called:
after a call of a MainHandler function (e.g. ApplDescCheckSessionTransition())
and until the call of ApplDescResponsePendingOverrun() or
ApplDescResponsePendingOvertimed() orpConfirmation().

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

119 / 164

12.6.12.2 ApplDescRcrRpConfirmation()

ApplDescRcrRpConfirmation

Available since 2.11.00
Is callback

Prototype

Single Context

void ApplDescRcrRpConfirmation(vuint8 status)

Multi Context

void ApplDescRcrRpConfirmation(vuint8 iContext, vuint8 status)

Parameter

iContext Reference to the corresponding request context

status If the transmission was successful, the parameter value will be
kDescOk. Otherwise – kDescFailed.

Return code

- -

Functional Description

Once the RCR-RP response has been forced, this function will be called in any case. The
transmission status is reported by the status parameter.

Pre-conditions

CANdesc was configured to use this option (enabled in the GENtool).

Call context

CAN Driver TX-ISR  TP Confirmation  this function

Particularities and Limitations

 Be aware of time consuming implementation for this function (interrupt call context).

12.6.13 DynamicallyDefineDataIdentifier ($2C) (UDS) functions

Since this feature is only for some OEM available, please refer to the OEM specific documentation
to find out if is applicable for your configuration.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

120 / 164

12.6.13.1 DescMayCallStateTaskAgain()

DescMayCallStateTaskAgain

Available since 4.00.00
Is Reentrant

Is callback

Prototype

Single Context

DescBool DescMayCallStateTaskAgain (void)

Multi Context

DescBool DescMayCallStateTaskAgain (void)

Parameter

- -

Return code

kDescTrue

kDescFalse

 TRUE if you may call again the state task within this application
task cycle.

 FALSE if the DescStateTask() must not be called again.

Functional Description

Motivation: The DescStateTask() can be called as fast as possible but it still can not be
enough fast for complex service processing (e.g. DDIDs containing long descriptions) to
match fast timing-performance requirements. This function provides the info if the
application may call again the state-task in the same task context without causing endless
loop (important for non-preemptive OS environments).

Example of the API usage:

void ApplDiagTask(void) /* application function called as fast as possible */

{

 do /* pump the state task as long as needed */

 {

 DescStateTask();

 }

 while(DescMayCallStateTaskAgain() == kDescTrue);

}

Pre-conditions

- Preprocessor define “DESC_ENABLE_HIPERFORMANCE_DYNDID_MODE” is
available (using user-config file in GENtool).

- The application uses the split-task concept (i.e. calls DescState-/TimerTask() instead of
DescTask()).

Call context

Background-loop level or OSEK-OS Task. The Task should have a lower or equal priority
than all other interaction to the CANdesc component.

Particularities and Limitations



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

121 / 164

12.6.13.2 ApplDescCheckDynDidMemoryArea()

ApplDescCheckDynDidMemoryArea

Available since 3.02.00

Must be Reentrant
Is callback

Prototype

Any Context

DescDynDidMemCheckResult ApplDescCheckDynDidMemoryArea (

 DescDynDidMemBlockAddress srcAddr,

 DescDynDidMemBlockSize len);

Parameter

srcAddr Start address (Service $2C 02 request parameter ‘memoryAddress’).

len Length of block to read (Service $2C 02 request parameter
‘memorySize’).

Return code

memBlockOk Permit the access to requested memory block and extend the DDID.

memBlockInvAddress Forbid the access due invalid requested memory address
(requestOutOfRange).

memBlockInvSize Forbid the access due invalid requested block length
(requestOutOfRange).

memBlockInvSecurity Forbid the access due current security mode settings prohibit the DDID
definition (securityAccessDenied).

memBlockInvCondition Forbid the access due other restrictions (conditionsNotCorrect).

If the memory access if forbidden, the Service $2C Request is negative responded with NRC 22
(conditionsNotCorrect), 31 (requestOutOfRange) or 33 (securityAccessDenied).

Functional Description

This callback function is triggered when defining a DDID that shall read bytes from the ECU’s
memory (Service Request $2C 02). The application can permit the (re-)definition of the DDID or
forbid it.
The service request is responded according to this.

The application must check

 if the given srcAddr and following len bytes are valid ECU addresses and if they are

readable,

 if the current security state allows to define the DDID right now,

 if there are other conditions that may forbid the definition of the DDID.

If all checks allow the DDID definition, the callback function must return memBlockOk.

FYI: When later reading the defined DDIDs by service $22, the standard checks [of Service $23
ReadMemoryByAddress] are executed, that perform security checks before accessing the
memory.
So, above security check with service $2C shall prove that the current security state permits the
definition of the DDID, the security check in service $22 (resp. $23) proves [in the context of the
then existing security state] the actual reading of the memory range.

Pre-conditions

-

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

122 / 164

Call context

From DescTask()

Particularities and Limitations



12.6.13.3 Non-volatile memory support

For some car-manufactures CANdesc provides NVRAM support for the dynamically
defined DID definitions. There are some APIs that must be operated and some call-backs
to be implemented by the application in order to get the NVRAM support fully operational.

The following diagrams show the two oeprations on NVRAM – restore (at power on) and st
ore (usuall prior power off) data.

Restore data at ECU power on

Caution
At each CANdesc initialization (e.g. ECU reset/ power on) the “restore” procedure must
be performed!

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

123 / 164

Figure 12-1 DynDID definition restore and tester interaction

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

124 / 164

Store data at ECU power down

Info
The store operation can be performed at any time not only at power down.

Figure 12-2 Store DynDID definitions

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

125 / 164

12.6.13.3.1 DescDynDefineDidPowerUp()

DescDynDefineDidPowerUp
Available since 5.06.09

Is Reentrant
Is callback

Prototype

Single Context

void DescDynDefineDidPowerUp (void)

Multi Context

void DescDynDefineDidPowerUp (void)

Parameter

- -

Return code

- -

Functional Description

Once the ECU has been powered one/reset or just need to be reinitialized, this API must
be called to restore the dynamically defined DID content.

Usually called after the NVRAM manager is initialized.

Pre-conditions

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context

- any

Particularities and Limitations

 Must be called after DescInitPowerOn().

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

126 / 164

12.6.13.3.2 DescDynIdMemContentRestored ()

DescDynIdMemContentRestored
Available since 5.06.09

Is Reentrant
Is callback

Prototype

Single Context

void DescDynIdMemContentRestored (DescDynDidStorageInfo storageInfo)

Multi Context

void DescDynIdMemContentRestored (DescDynDidStorageInfo storageInfo)

Parameter

storageInfo.nvData

storageInfo.nvDataSize

storageInfo.checkSum

Not used

The size (in bytes) of the restored table.

The stored checksum, calculated by CANdesc at store time.

Return code

- -

Functional Description

After CANdesc has requested the application to restore the DynDID data
(“ApplDescRestoreDynIdMemContent ()”), this API must be called to notify CANdesc that
the DynDID content has been restored and can be used.

Pre-conditions

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context

- any

Particularities and Limitations

 none

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

127 / 164

12.6.13.3.3 DescDynDefineDidPowerDown ()

DescDynDefineDidPowerDown
Available since 5.06.09

Is Reentrant
Is callback

Prototype

Single Context

void DescDynDefineDidPowerDown (void)

Multi Context

void DescDynDefineDidPowerDown (void)

Parameter

- -

Return code

- -

Functional Description

If the ECU has to be reset or just power off /shutdown, this API must be called to store the
current DID definitions.

In order to save E2PROM write cycles, the application may perform compare to the
current E2PROM content and decide whether to store the table content or not.

Pre-conditions

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context

- any

Particularities and Limitations

 Shall be called prior power-down/shutdown execution

 May be called any time to store the current content of the DynDID tables.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

128 / 164

12.6.13.3.4 ApplDescStoreDynIdMemContent ()

ApplDescStoreDynIdMemContent
Available since 5.06.09

Is Reentrant
Is callback

Prototype

Single Context

void ApplDescStoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

Multi Context

void ApplDescStoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

Parameter

storageInfo.nvData

storageInfo.nvDataSize

storageInfo.checkSum

The pointer to the data to be stored;

The size (in bytes) of the table;

The checksum value, calculated by CANdesc, to be stored.

Return code

- -

Functional Description

Once this API is called by CANdesc, the application must trigger a write E2PROM
procedure to store the data given by CANdesc and the checksum value.

In order to save E2PROM write cycles, the application may perform compare to the
current E2PROM content and decide whether to store the table content or not.

Pre-conditions

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context

- any

Particularities and Limitations

 CANdesc does not keep the data pointed by the parameter pointer during the write
operation! The application must mirror the data if needed!

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

129 / 164

12.6.13.3.5 ApplDescRestoreDynIdMemContent ()

ApplDescRestoreDynIdMemContent
Available since 5.06.09

Is Reentrant
Is callback

Prototype

Single Context

void ApplDescRestoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

Multi Context

void ApplDescRestoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

Parameter

storageInfo.nvData

storageInfo.nvDataSize

storageInfo.checkSum

The pointer to the data to where the stored data shall be written

The size (in bytes) of the table expected.

Not used

Return code

- -

Functional Description

Once this API is called by CANdesc, the application must trigger a read E2PROM
procedure to restore the data for CANdesc and the checksum value.

Once the read process has completed, the API “DescDynIdMemContentRestored ()” must
be called to acknowledge the operation status to CANdesc.

Pre-conditions

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context

- any

Particularities and Limitations



Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

130 / 164

12.6.14 Memory Access Callbacks

12.6.14.1 ApplDescReadMemoryByAddress()

ApplDescReadMemoryByAddress

Available since 5.06.04
Is Reentrant

Is callback

Prototype

Any Context

void ApplDescReadMemoryByAddress (DescMsgContext* pMsgContext,

t_descMemByAddrInfo* pMemInfo)

Parameter

pMsgContext Refer the section 12.6.4.2 Service MainHandler for details
about this parameter.

pMsgContext->resData The response buffer pointer

pMsgContext->resDataLen The actual response length

pMemInfo->address The address to read from

pMemInfo->length The number of bytes to read

Return code

- -

Functional Description

This callback is called for read memory by address requests. The application has to do
following:

 Perform memory block validation (negative response can be set by calling
DescSetNegResponse()).

 Optional: Perform additional state validations (negative response can be set by
calling DescSetNegResponse()).

 Copy the requested memory contents into the response buffer.

 Set the response data length to the number of bytes copied.

 Confirm that the processing is finished (by calling DescProcessingDone()).

Pre-conditions

 The read memory by address service is supported.

 Refer to chapter 9.3 Read/Write Memory by Address (SID $23/$3D) (UDS) for more
details of the availability of this API. If you don’t see this API provided in desc.h, then
this feature is not supported for your project.

Call context

From DescTask()

Particularities and Limitations

 To call this handler periodically, ‘DescStartMemByAddrRepeatedCall’ needs to be used

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

131 / 164

12.6.14.2 ApplDescWriteMemoryByAddress()

ApplDescWriteMemoryByAddress

Available since 5.06.04
Is Reentrant

Is callback

Prototype

Any Context

void ApplDescWriteMemoryByAddress (DescMsgContext* pMsgContext,

t_descMemByAddrInfo* pMemInfo)

Parameter

pMsgContext Refer the section 12.6.4.2 Service MainHandler for details
about this parameter.

pMsgContext->reqData The pointer to the data to store

pMemInfo->address The address to write to

pMemInfo->length The number of bytes to write

Return code

- -

Functional Description

This callback is called for write memory by address requests. The application has to do
following:

 Perform memory block validation (negative response can be set by calling
DescSetNegResponse()).

 Optional: Perform additional state validations (negative response can be set by
calling DescSetNegResponse()).

 Copy the provided data into the memory area.

 Confirm that the processing is finished (by calling DescProcessingDone()).

Pre-conditions

 The write memory by address service is supported.

 Refer to chapter 9.3 Read/Write Memory by Address (SID $23/$3D) (UDS) for more
details of the availability of this API. If you don’t see this API provided in desc.h, then
this feature is not supported for your project.

Call context

From DescTask()

Particularities and Limitations

 To call this handler periodically, ‘DescStartMemByAddrRepeatedCall’ needs to be used

12.6.15 Flash Boot Loader Support

CANdesc provides some features to comply with the HIS flash boot loader procedures.

These features are not released for all OEMs so if the below listed APIs are not available
in your CANdesc version, then for the OEM, you currently use CANdesc, does not require,
resp. has another FBL procedures.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

132 / 164

12.6.15.1 DescSendPosRespFBL()

DescSendPosRespFBL

Available since 4.05.00
Is Reentrant

Is callback

Prototype

Any Context

void DescSendPosRespFBL (t_descFblPosRespType posRespSId)

Parameter

posRespSId One of the following values are allowed:

 kDescSendFblPosRespEcuHardReset

 kDescSendFblPosRespDscDefault.

Return code

- -

Functional Description

The application shall call this function as soon as possible after the initialization of the
CANdesc component is done and the ECU is able to communicate.

Once this function called, CANdesc will try to send the corresponding positive response
as follows:

 kDescSendFblPosRespEcuHardReset – a positive response to EcuHardReset ($51
$01) will be sent.

 kDescSendFblPosRespDscDefault – a positive response to DiagnosticSessionControl
Default session ($50 $01 $P2time $P2Star/10) will be sent.

If CANdesc is currently busy with a new tester request, there will be no response sent by
this API.

Pre-conditions

The FBL positive response feature is supported.

Call context

Any.

Particularities and Limitations

 See 13.8

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

133 / 164

12.6.15.2 ApplDescInitPosResFblBusInfo()

ApplDescInitPosResFblBusInfo
Available since 5.07.04

Is Reentrant
Is callback

Prototype

Any Context

vuint8 ApplDescInitPosResFblBusInfo (t_descUsdtNetBus* pBusInfo)

Parameter

pBusInfo Reference to the bus information structure that will be
initialized here.

pBusInfo->busType The bus driver that will send the response

pBusInfo->comChannel The communication channel on which the response will be
sent. (relevant only on multi channel systems)

pBusInfo->testerId The tester address which will be respond to. (relevant only on
bus systems with source/target addresses)

Return code

kDescOk Operation was successful, the FBL positive response will be
sent.

kDescFailed Operation failed – no FBL positive response will be sent.

Functional Description

This callback is called once the application decided to call the API DescSendPosRespFBL
to get the concrete addressing information.

The application shall initialize only the parameter described above. The optional ones can
be skipped if not relevant on your system.

Pre-conditions

The FBL positive response feature is supported.

Call context

From DescSendPosRespFBL context.

Particularities and Limitations

 -

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

134 / 164

12.6.16 Debug Interface / Assertion

12.6.16.1 ApplDescFatalError()

ApplDescFatalError

Available since 2.00.00
Is Reentrant

Is callback

Prototype

Single Context

void ApplDescFatalError (vuint8 errorCode, vuint16 lineNumber)

Multi Context

void ApplDescFatalError (vuint8 errorCode, vuint16 lineNumber)

Parameter

errorCode The errorCode is a classification of the assertion. The
errorCodes can be also found in file ‘desc.h’. The errorCodes
are listed below:

lineNumber A line number of file ‘desc.c’ from which this function is called.

Return code

- -

Functional Description

The CANdesc debug interface is similar to assertion constructof common programming
languages. Assertions are code checks which are written so that they should always
evaluate to true. If an assertion is false, it indicates a possible bug in the program, corrupt
system state or a misoperation of the user-interface.

CANdesc is calling the function ApplDescFatalError() function to indicate a evaluation of
an assertion to false. If this will happen it is recommended to halt the program's execution
immediately. This could be reach by an endless loop in that call-back.

The assertions can be disabled in the GenTool settings. The resource (ROM and runtime)
consumption can be reduced by disabling the assertions.

Error codes

kDescAssertWrongTpTxChannel (0x00):

The wrong TP channel is used – verify the TP interface to the CANdesc component

kDescAssertIndexTableInvalidReference (0x02):

Internal generation failure.

kDescAssertSvcTableUnreachableItem (0x03):

Internal generation failure.

kDescAssertSvcTableInvalidReference (0x04):

Internal generation failure.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

135 / 164

kDescAssertSvcTableInconsistentNumber (0x05):

Internal generation failure.

kDescAssertMissingMainHandler (0x06):

Internal generation failure.

kDescAssertInvalidContextId (0x08):

Wrong iContext should be used - Check the consistency of the iContext parameter in the
application.

kDescAssertSvcTableIndexOutOfRange (0x09):

Internal generation failure.

kDescAssertSvcInstTableIndexOutOfRange (0x0A):

Internal generation failure.

kDescAssertContextIdWasModified (0x0B):

The iContext member of the pMsgContext parameter in the MainHandler functions are
illegal modified – verify the MainHandler functions in the application

kDescAssertProcessingDoneCallAfterResFlushing (0x0E):

DescProcessingDone() is called at least twice for one request – check the call of
DescProcessingDone() in the application.

kDescAssertTooLongSingleFrameResponse (0x0F):

Response lengthof a periodic DID is exceeding the SingleFrame length – check the
response length for periodic DIDs.

kDescAssertApplLackOfConfirmation (0x11):

The time for response processing is too long – verify if the call of DescProcessingDone()
is done in any case.

kDescAssertZeroStateValue (0x13):

The state parameter is zero – check state handling

kDescAssertInvalidContextMode (0x16):

Internal runtime error

kDescAssertUnexpectedWriteIntoRingBuffer (0x17):

DescRingBufferWrite() is called without activated ring-buffer

kDescAssertRingBufferWriteExceedsTheResLen (0x18):

DescRingBufferWrite() is called to often

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

136 / 164

kDescAssertIllegalUsageOfNegativeResponse (0x1A):

After call of DescProcessingDone() a negative response is set

kDescAssertDiagnosticBufferOverflow (0x1B):

currently not available

kDescAssertFuncReqWoResMayNotUseRingBuffer (0x1C):

It is not possible to use the ring-buffer feature for functional request (KWP only)

kDescAssertSchedulerTimerEventWithoutAnyPID (0x1E):

Internal runtime error

kDescAssertSchedulerRingBufferIsActivated (0x1F):

For periodic DIDs it is not possible to use the ring-buffer.

kDescAssertUnknownTpTransmissionType (0x21):

Internal runtime error

kDescAssertIllegalAddRequestCount (0x22):

Internal runtime error

kDescAssertNoSidCanBeReportedInIdleMode (0x23):

Call of DescGetSeriveId() while not a user-service is processed

kDescAssertInvalidUsageOfForceRcrRpApi (0x24):

The DescForceRcrRpResponse() function is used illegal.

kDescAssertPidResLenToCddDefNotMatched (0x26):

The response length set by the application do not fit to the response length defined in
CANdela (cdd).

kDescAssertPidResLenToCurrLinearFreeSpace (0x27):

Internal runtime error

kDescAssertMissingDataForTransmission (0x28):

Internal runtime error

kDescAssertSchedulerFreeCellNotFound (0x29):

Internal runtime error

kDescAssertInvalidStateParameterValue (0x2A):

The state parameter value is wrong – check state handling in your application

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

137 / 164

kDescAssertNoFreeICNChannel (0x2B):

Internal runtime error

kDescAssertInvalidDescICNClient (0x2C):

Internal runtime error

kDescAssertNoFreeMsgContext (0x2D):

Internal runtime error

kDescAssertUnExpectedContextWithResponse (0x2E):

A response will be sent out of a wrong context.

kDescAssertIllegalCallOfRingBufferCancel (0x2F):

The API DescRingBufferCancel() has been called for a response that is not using the ring-
buffer concept (e.g. DescRingBufferStart() was not called).

kDescNetAssertWrongIsoTpRxChannel (0x40):

The wrong TP channel is used – verify the TP interface to the CANdesc component

kDescNetAssertWrongIsoTpTxChannel (0x41):

The wrong TP channel is used – verify the TP interface to the CANdesc component

kDescNetAssertWrongBusType (0x42):

The wrong bus type is used – verify the TP interface to the CANdesc component

kDescAssertDescIcnIllegalTargetPointer (0x50):

Internal runtime assertion

Pre-conditions

At least on type of assertions are activated

Call context

Form ISR or task level. The interrupts might be disabled

Particularities and Limitations

 After a call of this function the system is not stable anymore. It can not be guaranteed
that this component or the whole system is still working in correct manner.

12.6.17 “Spontaneous Response” transmission

To implement the service $86 (Respone On Event) it is necessary to transmit a message
without a previous request. If the same CAN ID have to be used for this reponse as for the
diagnostics response, CANdesc provides an API to trigger the transmission.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

138 / 164

12.6.17.1 DescApplSendSpontaneousResponse()

DescApplSendSpontaneousResponse

Available since 6.09.00
Is Reentrant

Is callback

Prototype

Any Context

DescBool DescApplSendSpontaneousResponse(DescMsg resData,

 DescMsgLen resLen,

 t_descUsdtNetBus* pBusInfo)

Parameter

resData Pointer to an application buffer with response data (including
posive response header).

resLen Number of bytes to be sent (up to 4095 bytes).

pBusInfo Reference to the bus information structure that will be initialized
here.

pBusInfo->busType The bus driver that will send the response.

pBusInfo->comChannel The communication channel on which the response will be sent.
(relevant only on multi channel systems).

pBusInfo->testerId The tester address which will be respond to (relevant only on
bus systems with source/target addresses).

Return code

kDescTrue Operation was successful, the response will be sent.

kDescFalse Operation failed – no response will be sent.

Functional Description

Calling this function the application can force CANdesc to send immediately a
spontaneous response.

If CANdesc is currently busy with a tester request, there will be no response sent by this
API and kDescFalse will be returned.

If this API returns kDescTrue, the application shall wait for the

ApplDescSpontaneousResponseConfirmation() prior initiating a new spontaneous
transmission.

Pre-conditions

CANdesc was configured to use this option (enabled in the GENtool). Only possible to
configure if Service 0x86 is contained in the cdd.

Call context

Task or interrupt.

Particularities and Limitations

 -

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

139 / 164

12.6.17.2 ApplDescSpontaneousResponseConfirmation()

ApplDescSpontaneousResponseConfirmation

Available since 6.09.00
Is callback

Prototype

Single Context

void ApplDescSpontaneousResponseConfirmation(vuint8 status)

Multi Context

void ApplDescSpontaneousResponseConfirmation (vuint8 iContext, vuint8 status)

Parameter

iContext Will be always “kDescPrimContext”.

status If the transmission was successful, the parameter value will be
kDescOk. Otherwise – kDescFailed.

Return code

- -

Functional Description

Once the spontaneous response has been successfully triggered (ref.
DescApplSendSpontaneousResponse()), this function will be called in any case. The
transmission status is reported by the status parameter.

Pre-conditions

Only available if the API DescApplSendSpontaneousResponse() is available.

Call context

CAN Driver TX-ISR  TP Confirmation  this function

Particularities and Limitations

 Be aware of time consuming implementation for this function (interrupt call context).

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

140 / 164

12.6.18 Generic Processing Notifications

12.6.18.1 ApplDescManufacturerIndication

ApplDescManufacturerIndication

Available since 6.13.00
Is callback

Prototype

Single Context

void ApplDescManufacturerIndication(vuint8 sid,

vuint8* data,

vuint16 length,

vuint8 reqType,

t_descUsdtNetBus* pBusInfo)

Multi Context

void ApplDescManufacturerIndication(vuint8 iContext,

vuint8 sid,

vuint8* data,

vuint16 length,

vuint8 reqType,

t_descUsdtNetBus* pBusInfo)

Parameter

iContext The current request context location

(used only as a handle - DO NOT MODIFY).

sid The service identifier of the received service request.

data Pointer to the first byte of the request data (without service
identifier byte).

length Length of the request data (without service identifier byte)

reqType The current request addressing method. Could be either
‚kDescFuncReq’ or ‚kDescPhysReq’ (bitmapped).

pBusInfo The current request communication information (i.e. driver type
(CAN, MOST, FlexRay, etc.), addressing information,
communication channel number, tester address (if applicable)
etc.

Return code

- -

Functional Description

This function is called right before CANdesc starts the processing of a received request.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

141 / 164

Pre-conditions

Only available if the feature “Manufacturer Notification Support” is activated and CANdesc
UDS2012 is used.

Call context

From DescTask()

Particularities and Limitations

12.6.18.2 ApplDescManufacturerConfirmation

ApplDescManufacturerConfirmation

Available since 6.13.00
Is callback

Prototype

Single Context

void ApplDescManufacturerConfirmation(vuint8 status)

Multi Context

void ApplDescManufacturerConfirmation(vuint8 iContext,

vuint8 status)

Parameter

iContext The current request context location

(used only as a handle - DO NOT MODIFY).

status kDescPostHandlerStateOk
The positive response was transmitted successfully

kDescPostHandlerStateNegResSent
It was a negative response

kDescPostHandlerStateTxFailed
A transmission error occurred

Return code

- -

Functional Description

This function is called after the processing of a request has been finished, a response has
been sent (or sending has failed) and all service PostHandlers were called.

Pre-conditions

Only available if the feature “Manufacturer Notification Support” is activated and CANdesc
UDS2012 is used.

Call context

From DescTask ()

Particularities and Limitations

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

142 / 164

12.6.18.3 ApplDescSupplierIndication

ApplDescSupplierIndication

Available since 6.13.00
Is callback

Prototype

Single Context

void ApplDescSupplierIndication(vuint8 sid,

vuint8* data,

vuint16 length,

vuint8 reqType,

t_descUsdtNetBus* pBusInfo)

Multi Context

void ApplDescSupplierIndication(vuint8 iContext,

vuint8 sid,

vuint8* data,

vuint16 length,

vuint8 reqType,

t_descUsdtNetBus* pBusInfo)

Parameter

iContext The current request context location

(used only as a handle - DO NOT MODIFY).

sid The service identifier of the received service request.

data Pointer to the first byte of the request data (without service
identifier byte).

length Length of the request data (without service identifier byte)

reqType The current request addressing method. Could be either
‚kDescFuncReq’ or ‚kDescPhysReq’ (bitmapped).

pBusInfo The current request communication information (i.e. driver type
(CAN, MOST, FlexRay, etc.), addressing information,
communication channel number, tester address (if applicable)
etc.

Return code

- -

Functional Description

This function is called during the processing of a request, after CANdesc has verified that
the requested service is allowed in the active session and security state.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

143 / 164

Pre-conditions

Only available if the feature “Supplier Notification Support” is activated and CANdesc
UDS2012 is used.

Call context

From DescTask()

Particularities and Limitations

12.6.18.4 ApplDescSupplierConfirmation

ApplDescSupplierConfirmation

Available since 6.13.00
Is callback

Prototype

Single Context

void ApplDescSupplierConfirmation(vuint8 status)

Multi Context

void ApplDescSupplierConfirmation(vuint8 iContext,

vuint8 status)

Parameter

iContext The current request context location

(used only as a handle - DO NOT MODIFY).

status kDescPostHandlerStateOk
The positive response was transmitted successfully

kDescPostHandlerStateNegResSent
It was a negative response

kDescPostHandlerStateTxFailed
A transmission error occurred

Return code

- -

Functional Description

This function is called after the processing of a request has been finished, a response has
been sent (or sending has failed) and all service PostHandlers were called. It is called
before ApplDescManufacturerConfirmation().

Pre-conditions

Only available if the feature “Supplier Notification Support” is activated and CANdesc
UDS2012 is used.

Call context

From DescTask ()

Particularities and Limitations

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

144 / 164

13 How To…

13.1 …implement a protocol service MainHandler

//1. Read ProtocolService

// - dynamic length

// - PIDs

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*

pMsgContext)

{

 /* Check the length */

 if(pMsgContext->reqDataLen > 2)

 {

 /* Check the sub-parameters */

 vuint16 param;

 /* Compose one parameter combining the HiByte and the LoByte in this order*/

 param = DescMake16Bit(pMsgContext->reqData[0], pMsgContext->reqData[1]);

 /* Dispatch the parameter */

 switch(param)

 {

 case 0xFFFF:

 if(pMsgContext->reqDataLen != 0xFFFF)

 {

 /* Write some data (skip the parameter offsets 0 und 1) */

 pMsgContext->resData[2] = DescGetLoByte(0x1234);

 pMsgContext->resData[3] = DescGetHiByte(0x1234);

 /* Set the response length */

 pMsgContext->resDataLen = 4;

 }

 else

 {

 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);

 }

 break;

 default:

 /* unknown parameter */

 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);

 }

 }

 else

 {

 DescSetNegResponse(pMsgContext-iContext, kDescNrcInvalidFormat);

 }

 /* In this case we did everything in the main-handler */

 DescProcessingDone(pMsgContext->iContext);

}

//2. Read ProtocolService

// - dynamic length

// - sub-function

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

145 / 164

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*

pMsgContext)

{

 /* Check the length */

 if(pMsgContext->reqDataLen > 1)

 {

 /* Dispatch the sub-function */

 switch(pMsgContext->reqData[0])

 {

 case 0xFF:

 if(pMsgContext->reqDataLen != 0xFFFF)

 {

 /* Format check ok: write some data (skip the parameter) */

 pMsgContext->resData[1] = DescGetLoByte(0x1234);

 pMsgContext->resData[2] = DescGetHiByte(0x1234);

 /* Set the response length */

 /* Hint: if the response length wasn't set, zero value is assumed! */

 pMsgContext->resDataLen = 3;

 }

 else

 {

 /* Wrong sub-parameter format */

 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);

 }

 break;

 default:

 /* Unknown sub-function */

 DescSetNegResponse(pMsgContext->iContext,

 kDescNrcSubfunctionNotSupported);

 }

 }

 else

 {

 DescSetNegResponse(pMsgContext-iContext, kDescNrcInvalidFormat);

 }

 /* In this case we did everything in the main-handler */

 DescProcessingDone(pMsgContext->iContext);

}

//3. Write ProtocolService

// - dynamic length

// - PIDs

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*

pMsgContext)

{

 /* Check the sub-parameters */

 vuint16 param;

 /* Check the length */

 if(pMsgContext->reqDataLen > 2)

 {

 /* Compose one parameter combining the HiByte and the LoByte in this order

*/

 param = DescMake16Bit(pMsgContext->reqData[0], pMsgContext->reqData[1]);

 /* Dispatch the parameter */

 switch(param)

 {

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

146 / 164

 case 0xFFFF:

 if(pMsgContext->reqDataLen != 0xFFFF)

 {

 /* Copy from the request data to your application */

 /* Use the data pointed by: pMsgContext->reqData[2],

 pMsgContext->reqData[3], etc.*/

 }

 else

 {

 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);

 }

 break;

 default:

 /* unknown parameter */

 DescSetNegResponse(pMsgContext->iContext, kDescNrcRequestOutOfRange);

 }

 }

 else

 {

 DescSetNegResponse(pMsgContext-iContext, kDescNrcInvalidFormat);

 }

 /* In this case we did everything in the main-handler */

 /* Hint: if the response length wasn't set, zero value is assumed! */

 DescProcessingDone(pMsgContext->iContext);

}

//4. Write ProtocolService

// - dynamic length

// - Sub-function

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*

pMsgContext)

{

 /* Check the sub-parameters */

 vuint16 param;

 /* Check the length */

 if(pMsgContext->reqDataLen > 2)

 {

 /* Compose one parameter combining the HiByte and the LoByte in this order*/

 param = DescMake16Bit(pMsgContext->reqData[0], pMsgContext->reqData[1]);

 /* Dispatch the parameter */

 switch(param)

 {

 case 0xFFFF:

 if(pMsgContext->reqDataLen != 0xFFFF)

 {

 /* Copy from the request data to your application */

 /* Use the data pointed by: pMsgContext->reqData[2],

 pMsgContext->reqData[3], etc.*/

 }

 else

 {

 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);

 }

 break;

 default:

 /* unknown sub-function /

 DescSetNegResponse(pMsgContext->iContext,

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

147 / 164

 kDescNrcSubfunctionNotSupported);

 }

 }

 else

 {

 DescSetNegResponse(pMsgContext-iContext, kDescNrcInvalidFormat);

 }

 /* In this case we did everything in the main-handler */

 /* Hint: if the response length wasn't set, zero value is assumed! */

 DescProcessingDone(pMsgContext->iContext);

}

13.2 …implement a service MainHandler

//5. Read Service

// - dynamic length

// - sub-function/PID

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*

pMsgContext)

{

 /* Check the length */

 if(pMsgContext->reqDataLen != 0xFFFF)

 {

 /* Format check ok: write some data */

 pMsgContext->resData[0] = DescGetLoByte(0x1234);

 pMsgContext->resData[1] = DescGetHiByte(0x1234);

 /* Set the response length */

 /* Hint: if the response length wasn't set, zero value is assumed! */

 pMsgContext->resDataLen = 2;

 }

 else

 {

 /* Wrong sub-function format */

 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);

 }

 /* In this case we did everything in the main-handler */

 DescProcessingDone(pMsgContext->iContext);

}

//6. Read Service

// - static length

// - sub-function/PID

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*

pMsgContext)

{

 /* Format check ok: write some data */

 pMsgContext->resData[0] = DescGetLoByte(0x1234);

 pMsgContext->resData[1] = DescGetHiByte(0x1234);

 /* Set the response length */

 /* Hint: if the response length wasn't set, zero value is assumed! */

 pMsgContext->resDataLen = 2;

 /* In this case we did everything in the main-handler */

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

148 / 164

 DescProcessingDone(pMsgContext->iContext);

}

//7. Write Service

// - dynamic length

// - sub-function/PID

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*

pMsgContext)

{

 /* Check the length */

 if(pMsgContext->reqDataLen != 0xFFFF)

 {

 /* Format check ok: write some data */

 /* Copy from the request data to your application */

 /* Use the data pointed by: pMsgContext->reqData[0],

 pMsgContext->reqData[1], etc.*/

 }

 else

 {

 /* Wrong sub-function format */

 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);

 }

 /* In this case we did everything in the main-handler */

 /* Hint: if the response length wasn't set, zero value is assumed! */

 DescProcessingDone(pMsgContext->iContext);

}

//8. Write Service

// - static length

// - sub-function/PID

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*

pMsgContext)

{

 /* Copy from the request data to your application */

 /* Use the data pointed by: pMsgContext->reqData[0], pMsgContext->reqData[1],

 etc.*/

 /* In this case we did everything in the main-handler */

 /* Hint: if the response length wasn't set, zero value is assumed! */

 DescProcessingDone(pMsgContext->iContext);

}

13.3 …implement a Signal Handler

//1. ReadSignalHandler

// - length <= 4Byte

// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

vuintx DESC_API_CALLBACK_TYPE ApplDescGetTemp(void)

{

 /* Return directly the signal value */

 return (vuintx)0xFFFF;

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

149 / 164

}

//2. ReadSignalHandler

// - length > 4Byte

// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

DescMsgLen DESC_API_CALLBACK_TYPE ApplDescGetTemp(DescMsg tgt)

{

 /* Copy the signal data into the buffer pointed by "tgt".*/

 /* Return the amount of written bytes */

 return 0;

}

//3. WriteSignalHandler

// - length <= 4Byte

// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

void DESC_API_CALLBACK_TYPE ApplDescGetTemp(vuintx data)

{

 /* "data" contains the signal value as-is from the request.

 Copy it into your application. */

}

//4. ReadSignalHandler

// - length > 4Byte

// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

DescMsgLen DESC_API_CALLBACK_TYPE ApplDescGetTemp(DescMsg src)

{

 /* Copy the signal data from the buffer pointed by "src".*/

 /* Return the amount of copied bytes */

 return 0;

}

13.4 …implement a Packet Handler

//1. ReadPacketHandler

// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

void DESC_API_CALLBACK_TYPE ApplDescGetTemp(DescMsg pMsg)

{

 /* Copy the signal value into the "pMsg" buffer. */

 pMsg[0] = DescGetLoByte(0x1234);

 pMsg[1] = DescGetLoByte(0x1234);

}

13.5 …implement a state transition function

//1. StateTransitionNotification

// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

150 / 164

void DESC_API_CALLBACK_TYPE ApplDescOnTransitionSession(DescStateGroup

formerState, DescStateGroup newState)

{

 /* You are just notified that this state group has performed a transition from

 * "formerState" to the "newState". */

}

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

151 / 164

13.6 …work with the ring-buffer mechanism

13.6.1 with asynchronous write

//1. Read Service (with asynchronous Ring-Buffer)

// - static length

// - sub-function/PID

vuint8 g_iContext;

TPMC Desc Appl_MainHandler Appl_MainHandler_2 EEPROM
Driver

Appl_PostHandler

call

DescRingBufferWrite(* dataPtr, dataLength)

DescRingBufferWrite(* dataPtr, dataLength)

DescRingBufferWrite(* dataPtr, dataLength)

DescRingBufferGetFreeSpace

return countOfFreeBytesInRingBuffer

DescRingBufferGetProgress

return currentBytePosition

Analyze and validate request

Write response length

DescRingBufferStart()

DescRingBufferWrite(* dataPtr, dataLength)

DescRingBufferGetFreeSpace

return countOfFreeBytesInRingBuffer

Not enough free
bytes to write
new data

Now - it is possibel to
write data to the ring-buffer

It is not possible to write data as in
the standard way if a ring-buffer will
be used (standard way is, to write to
DescMsgContext->ResData)

StartTransmission

FinishTransmission

TpCopyToCan

TpCopyToCan

TP reads
asynchronous the
data out of the
ring-buffer

Enough data are
stored in the
ring-buffer to start
the transmission

Call of Service Post Handler

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

152 / 164

void DESC_API_CALLBACK_TYPE ApplDescReadDTC(DescMsgContext* pMsgContext)

{

 vuint8 lData;

 /* Format check already done by CANdesc */

 /* Analysis of request has to done by ECU application */

 /* Set the response length */

 pMsgContext->resDataLen = 16;

 /* Fill the first data */

 lData = 5;

 /* Store iContext for further interaction with CANdesc */

 g_iContext = pMsgContext->iContext;

 /* check only on services with sub-function (e.g. 0x19) */

 if(pMsgContext->msgAddInfo.suppPosRes != 0)

 {

 /* since no response required – skip further processing */

 DescProcessingDone(pMsgContext->iContext);

 }

else

 {

 /* Now we have to set CANdesc into the Ring-Buffer mode */

 DescRingBufferStart(pMsgContext->iContext);

 /* Now it is possible to write into the Ring-Buffer */

 DescRingBufferWrite(pMsgContext->iContext, &lData, 1);

 /* Now trigger e.g. an EEPROM read event */

 ...

 }

}

EEPROM_TASK(xyz)

{

 vuint8 lDTC[3];

 ...

 /* Wait for EEPROM event */

 /* EEPROM event is finished with reading */

 {

 DescRingBufferWrite(g_iContext, &lDTC, 3);

 /* Now trigger next EEPROM reading */

 }

}

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

153 / 164

13.6.2 with synchronous write

//2. Read Service (with synchronous Ring-Buffer)

// - static length

// - sub-function/PID

extern void ApplDescReadDTC_AddOn(DescMsgContext* pMsgContext);

void DESC_API_CALLBACK_TYPE ApplDescReadDTC(DescMsgContext* pMsgContext)

{

 vuint8 lData;

 /* Format check already done by CANdesc */

Desc Appl_MainHandler Appl_MainHandler_2 EEPROM
Driver

Appl_PostHandler

call

PostHandler

call GetEEPROMData

DescRingBufferWrite(* dataPtr, dataLength)

call

DescRingBufferGetFreeSpace

call

DescRingBufferGetFreeSpace

return countOfFreeBytesInRingBuffer

return countOfFreeBytesInRingBuffer

DescRingBufferWrite(* dataPtr, dataLength)

GetEEPROMData

Analyze and validate request

write response length

DescRingBufferStart

DescRingBufferWrite(* dataPtr, dataLength)

DescStartRepeatedServiceCall(&ApplMainHandler_2)

Activate the
multiple service
call to get a
periodic call from
CANdesc

Within this function
call the data can be
written synchronous.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

154 / 164

 /* Analysis of request has to done by ECU application */

 /* Set the response length */

 pMsgContext->resDataLen = 16;

 /* Fill the first data */

 lData = 5;

 /* check only on services with sub-function (e.g. 0x19) */

 if(pMsgContext->msgAddInfo.suppPosRes != 0)

 {

 /* since no response required – skip further processing */

 DescProcessingDone(pMsgContext->iContext);

 }

else

{

 /* Now we have to set CANdesc into the Ring-Buffer mode */

 DescRingBufferStart(pMsgContext->iContext);

 /* Now it is possible to write into the Ring-Buffer */

 DescRingBufferWrite(pMsgContext->iContext, &lData, 1);

 /* Use RepeatedSeriveCall feature to poll e.g. EEPROM driver */

 DescStartRepeatedServiceCall(pMsgContext->iContext, &ApplDescReadDTC_AddOn);

}

}

void ApplDescReadDTC_AddOn(DescMsgContext* pMsgContext)

{

 vuint8 lDTC[3];

 DescMsgLen freeSpace;

 /* Check if enough space is free in ring-buffer */

 freeSpace = DescRingBufferGetFreeSpace();

 if (freeSpace >= 3)

 /* try to read from EEPROM */

 {

 /* Success - result is in lDTC */

 DescRingBufferWrite(pMsgContext->iContext, &lDTC, 3);

 }

 else

 {

 /* nothing to do, wait for next MainHandler call, ring-buffer is full */

 }

}

13.7 …prevent the ECU going to sleep while diagnostic is active

Most car manufactures have the requirement to keep the ECU alive while the diagnostic
layer is active; including a pending request or a non-default session is currently active.

This requirement is handled by CANdesc for some car manufactures (see OEM specific
TechnicalReference_CANdesc document for details)

The following code example shows all necessary steps to keep the ECU alive while
diagnostic jobs are running (e.g. non-default session):

{

 DescContextActivity lActivity;

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

155 / 164

 DescStateGroup lState;

 lAcitvity = DescGetActivityState();

 lState = DescGetStateSession();

 /* check for a pending request or a non-default session */

 if (((lState & kDescStateSessionDefault) == 0) ||

 (lActivity != kDescContextIdle))

 {

 /* Force to stay alive */

 }

 else

 {

 /* Ready for sleeping */

 }

}

13.8 …send a positive response without request after FBL flash job

According to some specifications the application has to send a positive response either to
“diagnostic session control – default session” or “ECU reset – hard reset” after a
successful flash job without a request. The Flash Boot Loader has to set a flag (reset
response flag) in RAM or EEPROM which has to be evaluated by the application at
startup. Depending on its value the application has to call the CANdesc function
DescSendPosRespFBL() with the appropriate response ID.

CANdesc provides the API DescSendPosRespFBL() for this purpose.

Due to bus communication is necessary to send the positive response; some limitations
have to be handled by the application:

1) Bus communication is to be requested by the application

2) If bus communication is possible, the application has to call DescSendPosRespFBL().

CANdescBasic will send the positive response.

3) The application will be called (ApplDescInitPosResFblBusInfo()) to provide the concrete
addressing information of the response.

4) Bus communication can be released by the application.

13.9 …enforce CANdesc to use ANSI C instead of hardware optimized bit type

CANdesc uses per default the bit-type definition provided by the CANdriver, since it is
selected as optimal for the concrete CPU. On this way the CANdesc ROM and RAM
resource consumption is kept as low as possible.

Due to the complexity of some CANdesc data structures there can be problems on certain
compilers with special bit-structure compiler options.

If you encounter such problems either at compile or at run-time, you can turn the ANSIC C
bit-type support in CANdesc on. To do that, just add a user configuration file in GENy with
the following content:

#define DESC_USE_ANSI_C_BIT_TYPE

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

156 / 164

13.10 …configure Extended Addressing

If Extended Addressing is used as TP Addressing mode some additional settings have to
be done. “DescCheckTA” has to be set for the “Target Address Message Filter” in GENy.

Figure 13-1 GENy TP configuration

Additional a user configuration file has to be used to configure the functional target
address. An example for the content of the user configuration file is given below.

#define kDescOemExtAddrFuncTargetAddr 0xFE

13.11 …use Multiple Addressing

This chapter is a short summary of additional information that the application has to
provide for CANdesc if the Tp addressing mode is Multiple Addressing.

In the case that a positive response has to be send after FBL flash job of the application,
please assure that the correct addressing information are provided in the callback
ApplDescInitPosResFblBusInfo().

Furthermore, the “Rx Get Buffer” and “Rx Indication” functions have to be redirected to the
application if one of the Tp Addressing modes is Normal Addressing. This can be done in
the GENy configuration of the TP, a callback name different from the one that is
implemented in CANdesc has to be entered.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

157 / 164

Figure 13-2 GENy TP callbacks

The callbacks have to be implemented in the application. In the Get Buffer function the
CAN Id has to be set for the FC in the case of Normal Addressing,

/* Example: A configuration with only CANdesc Tp connections and only one Tp

Tx/Rx channel. */

TP_MEMORY_MODEL_DATA canuint8* DispatcherDescGetBuffer(canuint8 tpChannel,

canuint16 datLen)

{

 TP_MEMORY_MODEL_DATA canuint8* retPtr = V_NULL;

 retPtr = DescGetBuffer(tpChannel, datLen);

 if(retPtr != V_NULL)

 {

 if((TpRxGetAddressingFormat(tpChannel) == kTpNormalAddressing))

 {

 /* kApplNormalAddressingTxId, have to defined by the application*/

 TpRxSetTransmitID(tpChannel, kApplNormalAddressingTxId);

 }

 }

 return retPtr;

}

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

158 / 164

The response ID for Normal Addressing has to be set in the Indication function. The
response Id has to be set after the call of DescPhysReqInd().

/* Example: A configuration with only CANdesc Tp connections and only one Tp

Tx/Rx channel. */

void DispatcherDescPhysReqInd(canuint8 tpChannel, canuint16 datLen)

{

 vuint8 addressingType = (TpRxGetAddressingFormat(tpChannel));

 DescPhysReqInd(tpChannel, datLen);

 /*Set CAN IDs for the Response*/

 if(addressingType == kTpNormalAddressing)

 {

/* kApplNormalAddressingTxId and kApplNormalAddressingPhysRxId, have to

defined by the application*/

TpTxSetChannelID(0 /*tpTxChannel*/, kApplNormalAddressingTxId,

kApplNormalAddressingPhysRxId);

/* tpTxChannel = 0 is only possible because only one Tx Channel is

configured.*/

 }

}

13.12 …use “Dynamic Normal Addressing Multi TP” with multiple tester

This chapter is a short summary of additional information that the application has to
provide for CANdesc if the Tp addressing mode is “Dynamic Normal Addressing Multi TP”
with more than one tester.

In the case that a positive response has to be send after FBL flash job of the application,
please assure that the correct addressing information are provided in the callback
ApplDescInitPosResFblBusInfo().

Furthermore, the “Rx Get Buffer” function has to be redirected to the application. This can
be done in the GENy configuration of the TP, a callback name different from the one that is
implemented in CANdesc has to be entered.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

159 / 164

Figure 13-3 GENy TP callbacks (physical addressing)

The “Get Buffer” function of the functional connection has to be redirected to the
application too.

Figure 13-4 GENy TP callbacks (functional addressing)

The callbacks have to be implemented in the application. The received CAN ID has to be
mapped to the corresponding transmit CAN ID and the TP connection number has to be
set in the xxxGetBuffer callback:

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

160 / 164

TP_MEMORY_MODEL_DATA canuint8* DispatcherDescGetBuffer(canuint8 tpChannel,

canuint16 datLen)

{

 TP_MEMORY_MODEL_DATA canuint8* retPtr = V_NULL;

 switch(TpRxGetChannelID(tpChannel))

 {

 case kDispatcherRxDiagPhysCanId:

 TpRxSetTransmitID(tpChannel, kDispatcherTxDiagPhysCanId);

 TpRxSetConnectionNumber(tpChannel, kDescDiagConnection);

 retPtr = DescGetBuffer(tpChannel, datLen);

 break;

 case kDispatcherRxDiagAddPhysCanId:

 TpRxSetTransmitID(tpChannel, kDispatcherTxDiagAddPhysCanId);

 TpRxSetConnectionNumber(tpChannel, kDescDiagAddConnection);

 retPtr = DescGetBuffer(tpChannel, datLen);

 break;

 default:

 ;

 }

 return retPtr;

}

The receiced CAN ID has to be mapped to the corresponding transmit CAN ID in the
xxxGetFuncBuffer callback. Furthermore it is important, that the physical Rx ID is set for
the response and not the functional one. This CAN ID is used to recognize the FC of the
tester in case of a multiframe response:

TP_MEMORY_MODEL_DATA canuint8* DispatcherDescGetFuncBuffer(vuint16 dataLength)

{

 TP_MEMORY_MODEL_DATA canuint8* retPtr = V_NULL;

 switch(TpFuncGetReceiveCanID())

 {

 case kDispatcherRxDiagFunc:

 TpFuncSetTransmitCanID(kDispatcherTxDiagPhysCanId);

 TpFuncSetReceiveCanID(kDispatcherRxDiagPhysCanId);

 retPtr = DescGetFuncBuffer(dataLength);

 break;

 case kDispatcherRxDiagAddFunc:

 TpFuncSetTransmitCanID(kDispatcherTxDiagAddPhysCanId);

 TpFuncSetReceiveCanID(kDispatcherRxDiagAddPhysCanId);

 retPtr = DescGetFuncBuffer(dataLength);

 break;

 default:

 ;

 }

 return retPtr;

}

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

161 / 164

The code examples above are for 2 testers, in the example are some defines used that
have to be provided by the application corresponding to the configuration.

Define Description

kDispatcherRxDiagPhysCanId Physical request CAN ID of the first tester

kDispatcherRxDiagFuncCanId Functional request CAN ID of the first tester

kDispatcherTxDiagPhysCanId Response CAN ID of the first tester

kDispatcherRxDiagAddPhysCanId Physical request CAN ID of the second tester

kDispatcherRxDiagAddFuncCanId Functional request CAN ID of the second tester

kDispatcherTxDiagAddPhysCanId Response CAN ID of the second tester

kDispatcherTxDiagTpChannel Transmit Tp Channel of CANdesc. If only one
Tp Channel is used, it is has to be set to zero.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

162 / 164

14 Related documents

Abbreviation File Name Description

/KWP2000/ Keyword 2000 protocol

/TPMC/ User manual of the multi-connection transport layer
module. The transport layer is implemented
according to /ISO 15765/

/ISO 15765/ This ISO standard describes diagnostics and
diagnostics on CAN.

Note: If no file name is given, the document is not provided by Vector.

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

163 / 164

15 Glossary

Abbreviation Description

CANdb CAN database by Vector which is used by Vector tools.

CANdesc CAN diagnostics embedded software component

CDD CANdela Diagnostic Database

CF Consecutive Frame (transport protocol frame)

CCL Communication Control Layer

DBC CAN database format of the Vector company, which is used by the
GENtool to gather information about the ECUs in the network, their
communication relations, message definitions, signals of
messages, network related information (e.g. manufacturer type,
network management type, etc.).

ECU Electronic Control Unit

FBL Flash Boot Loader

KWP 2000 Keyword Protocol 2000

OSEK German abbreviation, “Offene Systeme und deren Schnittstellen
für die Elektronik im Kraftfahrzeug”, means “open systems and the
corresponding interfaces for automotive electronics”

RCR-RP Request Correctly Received – Response Pending

SF Single Frame

SID Service Identifier

SPRMIB Suppress Positive Response Message Indication Bit

TP Transport Protocol

UDS Unified Diagnostic Services

VSG Vehicle System Group

Technical Reference CANdesc

2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

164 / 164

16 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 History
	2 Introduction
	3 Documents this one refers to…
	4 Architecture Overview
	4.1 CANdesc – Internal processing
	4.1.1 Diagnostic protocol
	4.1.2 How does this flow actually work?

	4.2 Application interface flow
	4.2.1 Session- and CommunicationControl

	5 Advanced Configuration
	5.1 Configure DBC attributes for diagnostics

	6 CANdesc Configuration in GENy
	6.1 Step One – Importing an ECU Diagnostic Description
	6.2 Step Two – ECU Diagnostic Configuration in GENy
	6.2.1 Global CANdesc Settings
	6.2.1.1 Generic Processing Notifications (UDS2012)

	6.2.2 Service Specific Settings
	6.2.2.1 Generic Service Settings
	6.2.2.2 Predefined (implemented) Services in CANdesc
	6.2.2.3 Signal Access Enabled Services

	6.2.3 Timing Settings
	6.2.4 Security Access Settings (UDS2006)
	6.2.5 Security Access Settings (UDS2012)
	6.2.6 Scheduler Settings

	7 CANdescBasic Configuration in GENy
	7.1 Global CANdescBasic Settings
	7.2 Service Specific Settings
	7.3 Timing Settings
	7.4 Diagnostic State Configuration

	8 Multi Identity Support
	8.1 Single Identity Mode
	8.1.1.1 Configuration in CANdela
	8.1.1.2 Configuration in GENy

	8.2 VSG Mode
	8.2.1 Implementation Limitations
	8.2.2 Configuration in CANdela
	8.2.3 Configuration in CANdela
	8.2.4 Configuration in GENy

	8.3 Multi Identity Mode

	9 Diagnostic Service Implementation Specifics
	9.1 ReadDataByIdentifier (SID $22)
	9.1.1 Limitations of the service
	9.1.2 Single PID mode
	9.1.2.1 Sending a positive response using linear buffer access
	9.1.2.2 Sending a positive response using ring buffer access
	9.1.2.3 Sending a negative response

	9.1.3 Multiple PID mode
	9.1.3.1 Pure linear buffer configuration
	9.1.3.1.1 Sending a positive response
	9.1.3.1.2 Sending a negative response

	9.1.3.2 Ring buffer active configuration
	9.1.3.2.1 Sending a positive response
	9.1.3.2.2 Sending a negative response
	9.1.3.2.3 PostHandler execution rule

	9.2 DynamicallyDefineDataIdentifier (SID $2C) (UDS)
	9.2.1 Feature set
	9.2.2 API Functions
	9.2.3 Sequence Charts

	9.3 Read/Write Memory by Address (SID $23/$3D) (UDS)
	9.3.1 Tasks performed by CANdesc
	9.3.2 Task to be performed by the Application
	9.3.3 Repeated service calls

	10 Generic Processing Notifications
	10.1 Using dynamically defined data Identifier

	11 Busy Repeat Responder Support (UDS2006 and UDS2012)
	11.1 Configuration in GENy

	12 CANdesc API
	12.1 API Categories
	12.1.1 Single Context
	12.1.2 Multiple Context (only CANdesc)

	12.2 Data Types
	12.3 Global Variables
	12.4 Constants
	12.4.1 Component Version

	12.5 Macros
	12.5.1 Data exchange
	12.5.1.1 Splitting 16 bit data
	12.5.1.2 Splitting 32 bit data
	12.5.1.3 Assembling 16 bit data
	12.5.1.4 Assembling 32 bit data

	12.6 Functions
	12.6.1 Administrative Functions
	12.6.1.1 DescInitPowerOn()
	12.6.1.2 DescInit()
	12.6.1.3 DescTask()
	12.6.1.4 DescStateTask()
	12.6.1.5 DescTimerTask()
	12.6.1.6 DescGetActivityState()

	12.6.2 Multi Variant Configuration Functions
	12.6.2.1 DescInitConfigVariant()
	12.6.2.2 DescGetConfigVariant()

	12.6.3 Service Functions
	12.6.3.1 DescSetNegResponse()
	12.6.3.2 DescProcessingDone()

	12.6.4 Service callback functions
	12.6.4.1 Service PreHandler
	12.6.4.2 Service MainHandler
	12.6.4.3 Service PostHandler

	12.6.5 User (Unknown) Service Handling
	12.6.5.1 How it works
	12.6.5.2 ApplDescCheckUserService()
	12.6.5.3 DescGetServiceId()
	12.6.5.4 Generic User Service MainHandler
	12.6.5.5 Generic User Service PostHandler

	12.6.6 Session Handling
	12.6.6.1 ApplDescCheckSessionTransition()
	12.6.6.2 DescSessionTransitionChecked()
	12.6.6.3 DescIsSuppressPosResBitSet ()
	12.6.6.4 ApplDescOnTransitionSession()
	12.6.6.5 DescSetStateSession()
	12.6.6.6 DescGetStateSession()
	12.6.6.7 DescGetSessionIdOfSessionState

	12.6.7 CommunicationControl Handling
	12.6.7.1 ApplDescCheckCommCtrl()
	12.6.7.2 DescCommCtrlChecked()

	12.6.8 Periodic call of ‘Service MainHandler’
	12.6.8.1 DescStartRepeatedServiceCall()
	12.6.8.2 DescStartMemByAddrRepeatedCall()

	12.6.9 Ring Buffer Mechanism
	12.6.9.1 DescRingBufferStart()
	12.6.9.2 DescRingBufferWrite()
	12.6.9.3 DescRingBufferCancel()
	12.6.9.4 DescRingBufferGetFreeSpace()
	12.6.9.5 DescRingBufferGetProgress()

	12.6.10 Signal Interface of CANdesc
	12.6.10.1 ApplDesc<Signal-Handler>()
	12.6.10.2 Configuration of direct signal access

	12.6.11 State Handling (CANdesc only)
	12.6.11.1 DescGetState<StateGroup>()
	12.6.11.2 DescSetState<StateGroup>()
	12.6.11.3 ApplDescOnTransition«StateGroup»()

	12.6.12 Force “Response Correctly Received - Response Pending” transmission
	12.6.12.1 DescForceRcrRpResponse()
	12.6.12.2 ApplDescRcrRpConfirmation()

	12.6.13 DynamicallyDefineDataIdentifier ($2C) (UDS) functions
	12.6.13.1 DescMayCallStateTaskAgain()
	12.6.13.2 ApplDescCheckDynDidMemoryArea()
	12.6.13.3 Non-volatile memory support
	12.6.13.3.1 DescDynDefineDidPowerUp()
	12.6.13.3.2 DescDynIdMemContentRestored ()
	12.6.13.3.3 DescDynDefineDidPowerDown ()
	12.6.13.3.4 ApplDescStoreDynIdMemContent ()
	12.6.13.3.5 ApplDescRestoreDynIdMemContent ()

	12.6.14 Memory Access Callbacks
	12.6.14.1 ApplDescReadMemoryByAddress()
	12.6.14.2 ApplDescWriteMemoryByAddress()

	12.6.15 Flash Boot Loader Support
	12.6.15.1 DescSendPosRespFBL()
	12.6.15.2 ApplDescInitPosResFblBusInfo()

	12.6.16 Debug Interface / Assertion
	12.6.16.1 ApplDescFatalError()

	12.6.17 “Spontaneous Response” transmission
	12.6.17.1 DescApplSendSpontaneousResponse()
	12.6.17.2 ApplDescSpontaneousResponseConfirmation()

	12.6.18 Generic Processing Notifications
	12.6.18.1 ApplDescManufacturerIndication
	12.6.18.2 ApplDescManufacturerConfirmation
	12.6.18.3 ApplDescSupplierIndication
	12.6.18.4 ApplDescSupplierConfirmation

	13 How To…
	13.1 …implement a protocol service MainHandler
	13.2 …implement a service MainHandler
	13.3 …implement a Signal Handler
	13.4 …implement a Packet Handler
	13.5 …implement a state transition function
	13.6 …work with the ring-buffer mechanism
	13.6.1 with asynchronous write
	13.6.2 with synchronous write

	13.7 …prevent the ECU going to sleep while diagnostic is active
	13.8 …send a positive response without request after FBL flash job
	13.9 …enforce CANdesc to use ANSI C instead of hardware optimized bit type
	13.10 …configure Extended Addressing
	13.11 …use Multiple Addressing
	13.12 …use “Dynamic Normal Addressing Multi TP” with multiple tester

	14 Related documents
	15 Glossary
	16 Contact

