Technical Reference CANdesc vector

CANdesc

Technical Reference

Version 3.07.00

Authors Oliver Garnatz, Mishel Shishmanyan, Stefan Hubner,
Matthias Heil, Katrin Thurow, Patrick Rieder

Status Released

©2013, Vector Informatik GmbH Version: 3.07.00 1/164

Technical Reference CANdesc

1 History

vactor”

Author ________Date ___WVersion |Remarks

Oliver Garnatz

Oliver Garnatz

Mishel Shishmanyan

Mishel Shishmanyan

Mishel Shishmanyan

Stefan Hibner
Oliver Garnatz

Oliver Garnatz

Stefan Hibner
Oliver Garnatz

Peter Herrmann
Klaus Emmert

Mishel Shishmanyan
Oliver Garnatz

©2013, Vector Informatik GmbH

2003-11-12

2004-01-13

2004-03-09

2004-03-29

2004-04-26

2004-07-16
2004-08-12

2004-10-08

2004-10-15

2005-06-22

2005-08.03

based on template version 5.1.0

2.00.00

2.00.01

2.01.00

2.02.00

2.03.00

2.03.01
2.04.00

2.05.00

2.06.00

2.07.00

2.08.00

Splitting into separate documents
and general revision

Added chapter ‘Application interface
flow’

Updated format template

New application callback convention
(from CANdesc 2.09.00)

New APls:

- DescGetActivityState (from
CANdesc 2.10.00)

- DescSchedulerTask() (from
CANdesc 2.09.00)

Added more information and
limitations about the ring-buffer
mechanism (12.6.9 “Ring Buffer
Mechanism”)

New feature:

- Support for generic user
service (from CANdesc
2.11.00)

- Force CANdesc to send
RCR-RP response (from
CANdesc 2.11.00)

Editorial revision

Added chapter 4.2
ReadDataByldentifier (SID $22)
within the Single- and the Multiple
PID mode is described

ESCANO0000982: Description of
MainHandler structure is not
readable

ROE transmission unit is described
in detail

Some additional information are
provided
Added: Service $2C description.
Added: Warning Text added
APl added:

- DescStateTask,

- DescTimerTask,

- DescMayCallStateTaskAgain

Version: 3.07.00 2/164

Technical Reference CANdesc vector

- ApplDescFatalError
API modified:
- DescTask,
- ApplDescCheckSessionTran
sition,
- DescGetActivityState,
- DescGetStateSession.
API removed:
- DescSchedulerTask

Modified description for
ReadDataByldentifier with long data
and negative response in main-

handler.
Oliver Garnatz 2006-03-02 2.09.00 Added: ...prevent the ECU going to
sleep while diagnostic is active
Mishel Shishmanyan 2006-03-24 2.10.00 Added: document overview
Mishel Shishmanyan 2006-04-27 2.11.00 Modified:
-12.6.13

DynamicallyDefineDataldentifier
($2C) (UDS) functions

-12.6.13.1
DescMayCallState TaskAgain()

Mishel Shishmanyan 2007-02-22 2.12.00 Added:

- 12.6.9.3
“DescRingBufferCancel()”

Matthias Heil 2008-01-03 2.13.00 Added:
Caution concerning user main
handler on protocol level |

Matthias Heil 2008-02-29 2.14.00 Added:

Handling of read/write memory by
address:

- 9.3 “Read/Write Memory by
Address”

-12.6.8.2
“DescStartMemByAddrRepeatedCal
10"

- 12.6.14 "Memory Access
Callbacks”

Mishel Shishmanyan 2008-06-06 2.15.00 Removed:

Chapter “ResponseOnEvent
Transmission Unit”

Added:

- 12.6.13.3 “Non-volatile memory
support”

Mishel Shishmanyan 2008-11-09 2.16.00 Modified:

©2013, Vector Informatik GmbH Version: 3.07.00 3/164

Technical Reference CANdesc

Mishel Shishmanyan 2009-05-18
Mishel Shishmanyan 2009-08-11
Mishel Shishmanyan 2009-09-17
Mishel Shishmanyan 2010-01-26
Mishel Shishmanyan 2010-12-21
Katrin Thurow 2011-08-25

©2013, Vector Informatik GmbH

2.17.00

2.18.00

3.00.00

3.01.00

3.02.00

3.03.00

vactor’

-12.6.9and 12.6.9.1: Added
limitation for UDS and SPRMIB with
the ring buffer usage.

- 13.6 ...work with the ring-buffer
mechanism

Added:

- 12.6.15 Flash Boot Loader
Support

- 13.8 ...send a positive response
without request after FBL flash job
Modified:
12.6.6.1ApplDescCheckSessionTra
nsition()

Added:
12.6.6.3DesclsSuppressPosResBit
Set ()

Modified:

Minor editorial changes

5.2 Configure Handlers using
CANdela attributes — added new
data object attributes

Added:

13.9 ...enforce CANdesc to use
ANSI C instead of hardware
optimized bit type

5.1 Configure DBC attributes for
diagnostics

Added:

6 CANdesc Configuration in GENy
8 Multi Identity

12.6.2 Multi Variant Configuration
Functions

Added:

7 CANdescBasic Configuration in
GENy

Modified:

12.6.14.1
ApplDescReadMemoryByAddress()

12.6.14.2
ApplDescWriteMemoryByAddress()

12.6.9.2 DescRingBufferWrite()

Added:
8.1 Single Identity Mode
8.3 Multi Identity Mode

13.10 ...configure Extended
Addressing

Version: 3.07.00 4/164

Technical Reference CANdesc

Katrin Thurow 2011-09-19
Katrin Thurow 2011-11-27
Patrick Rieder 2013-01-23
Patrick Rieder 2013-05-27

©2013, Vector Informatik GmbH

vactor’

13.11 ...use Multiple Addressing

12.6.6.7
DescGetSessionldOfSessionState

Modified:
8 Multi Identity Support

13.8 ...send a positive response
without request after FBL flash job

3.04.00 Added:
13.12...use “Dynamic Normal
Addressing Multi TP” with multiple
tester
Modified:
13.11 ...use Multiple Addressing
3.05.00 Added:
12.6.17 “Spontaneous Response”
transmission
Modified:
6.2.1 Global CANdesc Settings
3.06.00 Added:
10 Generic Processing Notifications
12.6.18 Generic Processing
Notifications
Modified:
6.2.1 Global CANdesc Settings
12.6.4 Service callback functions
12.6.9 Ring Buffer Mechanism
Small fixes
3.07.00 Added:
11 Busy Repeat Responder Support
Modified:
13.12 ...use “Dynamic Normal
Addressing Multi TP” with multiple
tester
Version: 3.07.00 5/164

Technical Reference CANdesc vector

Contents
U 5 153 o SRS 2
2 INtrodUCION..... ..o e 12
3 Documents this one refers to..............ccoooiiiiiii 13
4 Architecture OVEIrVIEW.............oviiiiiiiiiii s 14
4.1 CANdesc — Internal proCeSSING........ccceiiiiiiiiiii e e e aaaees 14
411 Diagnostic protoColuciiiiiiiii e 14
41.2 How does this flow actually Work?...............ccccovieiiiiiiiiiiiiiiiiiiiiiiinens 15
4.2 Application interface flIow ... 18
421 Session- and CommunicationControl ..., 18
5 Advanced Configurationccoooiiiiiiiiii 19
5.1 Configure DBC attributes for diagnoSstiCsuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiines 19
6 CANdesc Configuration in GENY................oooiiiiii e 20
6.1 Step One — Importing an ECU Diagnostic Descriptioncccccvvveiiiiinennns 20
6.2 Step Two — ECU Diagnostic Configuration in GENYccccciiiiiiiiiiiiiiinnns 21
6.2.1 Global CANdESC SettingsS.....cccooeiiieieeeeeee e 22
6.2.1.1 Generic Processing Notifications (UDS2012)................. 27
6.2.2 Service Specific Settings.......coooviiviiiie 27
6.2.2.1 Generic Service Settingsccccvvvviii 28
6.2.2.2 Predefined (implemented) Services in CANdesc............ 29
6.2.2.3 Signal Access Enabled Services........ccccccvvvviiiiiiininnnnn.. 31
6.2.3 TiMINg Settings ...coooeeeiee e, 35
6.2.4 Security Access Settings (UDS2006)ccooeveeeieiieiiieeeeeeee, 36
6.2.5 Security Access Settings (UDS2012)cooviiiiiiiiiiiiiiiiiiiiieeeeeen 38
6.2.6 Scheduler Settingscoooooeeie 39
7 CANdescBasic Configuration in GENy ..., 42
7.1 Global CANdescBasiC SettingsScooiiiiiiiiiiiiie e 42
7.2 Service Specific SettiNgS.......oooveiiii 42
7.3 TIMING SEHINGS ..o 43
7.4 Diagnostic State Configuration............cccccci 43
8 Multi Identity SUPPOIt............oouiiiiiiii e aneeenrnnnnnnnnnnnnnne 47
8.1 Single Identity MOGEcoooiiiiiiii e 47
8.1.1.1 Configuration in CANdela...........ccceeeiiiiiiiiiiiies 47
8.1.1.2 Configuration in GENYoooiiiiiiiie i, 47

©2013, Vector Informatik GmbH Version: 3.07.00 6/164

Technical Reference CANdesc vector

8.2 VSEG MOUE ... 47
8.2.1 Implementation Limitations............cccoooioiiiiiiii e 48
8.2.2 Configuration in CANdEla.......cccoo oo 49
8.2.3 Configuration in CANdElA.........ccccooeiiiiiiiiie e 50
8.24 Configuration in GENYiiiiiii e 51
8.3 Multi Identity MOE..........oovviiiiiiiiiiiiiiieeeeee e 51
9 Diagnostic Service Implementation Specifics...................cciii 52
9.1 ReadDataByldentifier (SID $22).........cccvviiiiiiiiiiiieee e 52
9.1.1 Limitations of the ServiCe..............uuuuviiiiiiiiiiiiiiiiiee 53
9.1.2 SiNGle PID MOAE ... 54
9.1.2.1 Sending a positive response using linear buffer
BCCESS .iiitueeeiiie e ettt e ettt eaaan 54
9.1.2.2 Sending a positive response using ring buffer access.... 55
9.1.2.3 Sending a negative reSpoNSe.......ccceeeeeeviiviiiiiiiiieeeeeeennnns 56
9.1.3 Multiple PID MOAE......ccooeiieieieiicee e 56
9.1.3.1 Pure linear buffer configuration...............c....nnnn. 57
9.1.3.1.1 Sending a positive response....................... 57
9.1.31.2 Sending a negative response..................... 58
9.1.3.2 Ring buffer active configuration......................cccee . 58
9.1.3.2.1 Sending a positive response...................... 60
9.1.3.2.2 Sending a negative response..................... 61
9.1.3.2.3 PostHandler execution rule......................... 62
9.2 DynamicallyDefineDataldentifier (SID $2C) (UDS).........cccceeviveiiiieeiiie e, 62
9.2.1 Feature Set.....ooo 63
9.2.2 AP FUNCHIONS. ... 63
9.2.3 SeqUENCE ChartS ... 64
9.3 Read/Write Memory by Address (SID $23/$3D) (UDS)cccovvveevvirieeeiiiieeeens 67
9.3.1 Tasks performed by CANESC.........cooovviiiiiiii, 67
9.3.2 Task to be performed by the Application..............cccoooeiii. 67
9.3.3 Repeated service CallS ... 67
10 Generic Processing Notifications.......................cccccoiiiiii 69
10.1 Using dynamically defined data Identifier............ccooooovvviiiiii e, 70
11 Busy Repeat Responder Support (UDS2006 and UDS2012)...............ccoevvvvvvvvvnnnnnnn. 71
1.1 Configuration iN GENYuuuiiiiiiiiiiiiiiiiiiii e eeeenaanee 72
12 CANdEeSC APL ... 73
L R o I 07 1 1= Te (o] 4 1= T U 73
12.1.1 SiNGlEe CONEXL.....uviiiii e 73
12.1.2 Multiple Context (only CANAESC)........uuuviiiiiiiiiiiiiiiieeee e 73

©2013, Vector Informatik GmbH Version: 3.07.00 71164

Technical Reference CANdesc vector

12,2 Data Ty PES .o 73
12.3 Global Variables............cooooiooii 73
12,4 CONSIANTS ..o 73
12.4.1 Component VEISION...........couuiiiiii e 73

125 MACIOS ..o 74
12.51 Data eXChange..........uuuuuiiiiiiiiiiiiiiii e 74
12.5.1.1 Splitting 16 bitdata............ccooooerii 74

12.5.1.2 Splitting 32 bitdataccoovvvvviiei 74

12.5.1.3 Assembling 16 bit data............ccccevvviiiiiiii 74

12.5.1.4 Assembling 32 bitdata............ccccoeei i 75

(P22 T U1 T 1 1= U 75
12.6.1 Administrative FUNCLONSoovviiiiiiiie e 75
12.6.1.1 DesclnitPowerOn()........ccccceeiiieeiiiiiiiceee e, 75

12.6.1.2 DesClInit() ...cceeveeeeeiiiiiee 76

12.6.1.3 DeSCTASK()eevrrrruiiiiieiiiiiiiiiiiiie e 77

12.6.1.4 DescStateTask()ccoovvrriiiiiiieeiiiecee e, 78

12.6.1.5 DescTimerTask().......ccccoviiiiiiiiiiiiii 79

12.6.1.6 DescGetActivityState()......cccoeeevviiiiiiiiiiiiieie e, 80

12.6.2 Multi Variant Configuration Functions.............ccccooooi, 81
12.6.2.1 DesclnitConfigVariant()cccccoiiiiiii, 81

12.6.2.2 DescGetConfigVariant()ccccccevvvviiiiiiiiiiiiiieee 82

12.6.3 Service FUNCLONSoooieiieieee e 83
12.6.3.1 DescSetNegResponse()ccccvvvviiiiiiiiiiiiiiiiiiiieeeee 83

12.6.3.2 DescProcessingDone()..........ccuuuuiviiiiiiiiiiiiiiiiiiiiiiiieee 84

12.6.4 Service callback fuNCtioNScooviiiiiiiiiiii e, 84
12.6.4.1 Service PreHandler.............ccccccvviiiiiiiii 87

12.6.4.2 Service MainHandler..............cccovviiiiiiii e, 88

12.6.4.3 Service PostHandler.........c.ccooovviiiiiiiie e, 90

12.6.5 User (Unknown) Service Handlingccccoiiiiiiiiiiiiieiiiiiiieeeenn 91
12.6.5.1 HOW It WOIKS ..vvveiiieiiieeecei e 91

12.6.5.2 ApplDescCheckUserService()........ccouuuuummmrreiieeinnniiinnne 92

12.6.5.3 DescGetServiceld().........oooimmmmmiiiiiiiiiiiee e 93

12.6.5.4 Generic User Service MainHandler...............cccccceeee. 94

12.6.5.5 Generic User Service PostHandlerccccoovvveeee. 95

12.6.6 Session Handlingcooooeeeeeeeeeee 96
12.6.6.1 ApplDescCheckSessionTransition()..........ccccccvvvvvvvrnnnnnn. 96

12.6.6.2 DescSessionTransitionChecked()ccccccveeeiiiiiinnnn. 97

12.6.6.3 DesclsSuppressPosResBitSet ()......ccccoeeeevviiiiiiiiinnneenn, 98

12.6.6.4 ApplDescOnTransitionSession()ccceeveeeeviveeiviiiienneenns. 99

12.6.6.5 DescSetStateSession()........coccvveeiiiiiiiiiiiiiiie 100

12.6.6.6 DescGetStateSession()ccevvveviviiiiiiiieeiciceee e, 101

©2013, Vector Informatik GmbH Version: 3.07.00 817164

Technical Reference CANdesc vector

12.6.6.7 DescGetSessionldOfSessionState.............ccvvvieeeennn. 102
12.6.7 CommunicationControl Handling..........ccccooeeeeiiiiiiiiiiieeeein, 103
12.6.7.1 ApplDescCheckCommOCtrl()........cccccovvvrviiiiiiiiiiniiiiinnnn. 103
12.6.7.2 DescCommCitriChecked()........ccccovviiiiiiiieiiiiiiiiiiee e, 104
12.6.8 Periodic call of ‘Service MainHandler’cccccooeeeii, 105
12.6.8.1 DescStartRepeatedServiceCall()coovvvvivivviininnnnn. 105
12.6.8.2 DescStartMemByAddrRepeatedCall()...........cccceeeneee. 106
12.6.9 Ring Buffer Mechanism ... 106
12.6.9.1 DescRingBufferStart()..........cccccoovviviiiiiiiiiiie 108
12.6.9.2 DescRingBufferWrite()cccooeevvviiiiiiiiiiiieeiee e, 109
12.6.9.3 DescRingBufferCancel()cccccoovviiiiiiiiiiiiiiiiiiiiinnn, 110
12.6.9.4 DescRingBufferGetFreeSpace()ccccccovvvviiiiiiinnnnn. 111
12.6.9.5 DescRingBufferGetProgress().......ccccoevviieriiiiiiiiiinnneenn, 112
12.6.10 Signal Interface of CANESCccoeeeviiiieieeeee, 113
12.6.10.1 ApplDesc<Signal-Handler>()ccccoeevriiiiiiiennneenn. 113
12.6.10.2 Configuration of direct signal access............ccccceeeeeee.. 114
12.6.11 State Handling (CANdESC ONlY).....ccceeveeiiiieieeeeeee e 114
12.6.11.1 DescGetState<StateGroup>()......ccccceevviirriiiiiiiiiinnnen.n. 114
12.6.11.2 DescSetState<StateGroup>()cccccvvvvvviiiiiiiiiiininnnn. 115
12.6.11.3 ApplDescOnTransition«StateGroup»().........ccvvveeerenn.. 116
12.6.12 Force “Response Correctly Received - Response Pending”
ErANSIMISSION ... e 117
12.6.12.1 DescForceRcrRpResponse()......ccccccvvvviiiiiiiiiiiiininnnnn, 118
12.6.12.2 ApplDescRcrRpConfirmation()........ccceevveeevviieiiiiinnnennn. 119
12.6.13 DynamicallyDefineDataldentifier ($2C) (UDS) functions................ 119
12.6.13.1 DescMayCallStateTaskAgain()..........cccccevvrvviiieiiinnnnnnnn. 120
12.6.13.2 ApplDescCheckDynDidMemoryArea()cccccvvvvveeene. 121
12.6.13.3 Non-volatile memory supportccccevveeeiiiiiiiiiiineee. 122
12.6.13.3.1 DescDynDefineDidPowerUp().................. 125
12.6.13.3.2 DescDynldMemContentRestored () 126
12.6.13.3.3 DescDynDefineDidPowerDown () 127
12.6.13.3.4 ApplDescStoreDynldMemContent () 128
12.6.13.3.5 ApplDescRestoreDynldMemContent () 129
12.6.14 Memory Access Callbacks ... 130
12.6.14.1 ApplDescReadMemoryByAddress().........cccccvvvvvvervnnnnn. 130
12.6.14.2 ApplDescWriteMemoryByAddress().......cccovveeeerininnnnnn. 131
12.6.15 Flash Boot Loader Support ... 131
12.6.15.1 DescSendPosReSpFBL().......cccccvvviiiiiieieiiiiiiiiieee e, 132
12.6.15.2 ApplDesclnitPosResFbIBusInfo().........ccccceeeiiiniiinnnnn. 133
12.6.16 Debug Interface / ASSErtionccoovvviiiiii e 134
12.6.16.1 AppIDescFatalError()cccooueeeeeeeiiniiiiiiieeeee e 134

©2013, Vector Informatik GmbH Version: 3.07.00 9/164

Technical Reference CANdesc vector

12.6.17 “Spontaneous Response” transmission..............ceevvciiiieeeriieeinnnnnnn. 137

12.6.17.1 DescApplSendSpontaneousResponse().........ccceen...... 138

12.6.17.2 ApplDescSpontaneousResponseConfirmation() 139

12.6.18 Generic Processing Notifications...........ccccoooeiiiiiiiiiin, 140

12.6.18.1 ApplDescManufacturerindicationcccccceeeee. 140

12.6.18.2 ApplDescManufacturerConfirmationcc............ 141

12.6.18.3 ApplDescSupplierindicationccccoooooiiiiiiiiiinnnen. 142

12.6.18.4 ApplDescSupplierConfirmationccccevvvviienneen. 143

T o Lo T o 144
13.1 ...implement a protocol service MainHandler...............ccccvvveiiiiiiinieecin, 144
13.2 ...implement a service MainHandler.................covviiiiiiiiii e, 147
13.3 ...implement a Signal Handler..............ooiiiii e, 148
13.4 ...implement a Packet Handler............ooooiiiiii e 149
13.5 ...implement a state transition functionccccccoiiieii i 149
13.6 ...work with the ring-buffer mechanismcccccooiiiiiiii e, 151
13.6.1 With @synchronous Write............coovvvviiiiiiiiiiiiii 151

13.6.2 with SYNChronOUS WIIte.......cccuvuiiiiiiiii e 153

13.7 ...prevent the ECU going to sleep while diagnostic is active 154
13.8 ...send a positive response without request after FBL flash job 155
13.9 ...enforce CANdesc to use ANSI C instead of hardware optimized bit type.... 155
13.10 ...configure Extended Addressingccooveeeiieeei e 156
13.11 ...use Multiple ADAreSSiNg.........uiiie it eaeeeeeees 156
13.12 ...use “Dynamic Normal Addressing Multi TP” with multiple tester 158

14 Related dOCUMENLES..........coooiiiiii e 162
15 GlOSSANY ... 163
16 Contact..........ooooiiiii 164

©2013, Vector Informatik GmbH Version: 3.07.00 10/ 164

Technical Reference CANdesc vector

lllustrations
Figure 3-1: Manuals and References for CANAESCccoovviiiiiiiiiiiiiiiii 13
Figure 4-1: General reQUESE FlOW........uuuiiii i e 14
Figure 4-2: DESC run didgram..........ooooiiiiiiiiii e 15
Figure 4-3: Request message MapPiNgccouiiiiiiiiiiiiiiie e 16
Figure 4-4: Request processing StagesS.......ccuuii it 17
Figure 6-1 CANdesc GENy Startup SCreen............oiiiiiiiiiieicce e 20
Figure 6-2 Example of GENy global CANdesc settings.............cccvvviviiiiiiiiiiiie 22
Figure 6-3 Activated feature “Generic Processing Notifications”.............cccccovviiiiiiiinnn. 27
Figure 6-4 GENy diagnostiC SEIrvICE OVEIVIEWcccieeiiiiiiiiiiiii e 28
Figure 6-5 GENy generic sub-Service Setup...........cccccoviiiiiiiiiii 29
Figure 6-6 GENy predefined sub-service Setup............cccccvvviiiiiiiiii 30
Figure 6-7 GENy signal API| enabled sub-service Setupcccoovviiiiiiiiiiiiiiiieeeecee e, 32
Figure 6-8 GENy signal view of @ SUD-SEIVICE.........c..ccoiiiiiiiiiiiii e 33
Figure 6-9 GENy signal handler types............ooooviiiiiiii 33
Figure 6-10 GENYy direct access signal handler settingscccocooviiiiiiiiieiccee e, 34
Figure 6-11 GENy CANdesc timing parameterscccoiivviiiiiiiiii e 36
Figure 6-12 GENy CANdesc security access parametersccccccvvvvvviiiiiiiiiiiiiiiiiiiiiieeee 37
Figure 6-13 Security settings in GENYuuiiiiiiiis 38
Figure 6-14 GENy CANdesc scheduler parameters...........ccccceeiiieeiiiieeiiiii e, 40
Figure 7-1 CANdescBasic add @ USEr SESSIONccuiviiiiiiiiiiiiiiiiiiieeeeeeeee e 43
Figure 7-2 CANdescBasic change user session name, id or completely delete user

SESSION ..t 44
Figure 7-3 CANdescBasic session configuration at service overview.............ccccccccvvvvvvennnn. 45
Figure 7-4 CANdescBasic session configuration at service Id levelccccci. 45
Figure 7-5 CANdescBasic session configuration at sub-service level..............cccccccvvviieinn. 46
Figure 8-1 CANdesc multi identity mode ... 48
Figure 8-2 Defining VSGs in CANdelaStudio ... 50
Figure 8-3 Setting a VSG for service in CANdelaStudio..............ccccevvvviiiiiiiiii 51
Figure 9-1: Linearly written positive response on single PID request..............ccccvviiiinneeen. 54
Figure 9-2: “On the fly” response data Writing. ... 55
Figure 9-3: Negative response on single PID ... 56
Figure 9-4: Linearly written positive response on multiple PIDs (global ring buffer option is

O) e 57
Figure 9-5: Negative response on multiple PIDs (global ring buffer option is off).................. 58
Figure 9-6: Linearly written response data on multiple PIDs (global ring buffer option is on) 61
Figure 9-7: Negative response on multiple PIDs (global ring buffer option is on).................. 61
Figure 9-8: Post-Handler execution SEqQUENCE. ..o 62
Figure 9-9: Defining @ DDID.oooiiiiii 65
Figure 9-10: Reading @ DDID.........cooiiiiiiii 66
Figure 10-1 Call order of Manufacturer- and Supplier-Notficiation............cccccccvvvvvviiiiinnnnn. 69
Figure 10-2 Read out a DDID with generic processing notifications..............cccccccccvviviiinnnn. 70
Figure 11-1 lllustration of the feature BusyRepeatResponder.............cccccooiiiiiiinnnnnn. 71
Figure 11-2 Example of the “Number of Rx(Tx) Channels” settings............ccccccoviiiiiiiiinnen. 72
Figure 12-1 DynDID definition restore and tester interactionccccccc, 123
Figure 12-2 Store DynDID definitions............cooooiiii 124
Figure 13-1 GENyY TP configurationcocooiiiiiiiic e 156
Figure 13-2 GENy TP callbacks ... 157
Figure 13-3 GENy TP callbacks (physical addressing).........ccccoeeevviiiiiiiiiiiiieeeeceeee e, 159
Figure 13-4 GENy TP callbacks (functional addressing)ccceviieiiiiiiiiiiiee 159

©2013, Vector Informatik GmbH Version: 3.07.00 117164

Technical Reference CANdesc vector

2 Introduction

This document has not the job to describe the diagnostic itself. The focus of this document
is the technical aspects of the CANdesc component.

| Please note

. We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
guestionnaire.

©2013, Vector Informatik GmbH Version: 3.07.00 12 /164

Technical Reference CANdesc vector

3 Documents this one refers to...

m User Manuals CANdesc and CANdescBasic (one for both)
= Docu OEM

User Manual

]

Technical Technical

Reference Reference
General OEM

You are here

CANdese CANdesc|Basic)

Figure 3-1: Manuals and References for CANdesc

All common topics with CANdesc and CANdescBasic are described within this technical
reference very detailed.

Read all about OEM-specific differences in the TechnicalReference_ OEM.

For faster integration, refer to the product’s corresponding user manual CANdesc or
CANdescBasic.

©2013, Vector Informatik GmbH Version: 3.07.00 13/ 164

Technical Reference CANdesc vector

4 Architecture Overview

This chapter should describe the internal structure and behavior of the CANdesc
component.

4.1 CANdesc - Internal processing

4.1.1 Diagnostic protocol

The communication described in the diagnostic protocol consists of a ping-pong
communication between a tester (client) and an ECU (server). The tester requests a
service in the ECU by transmitting a request to him. The ECU should response with a
positive response, if the result of this service is valid or the action is prepared to be done.
Is the result negative or the action could not be executed, the ECU should respond
negative.

The validity checks have typically the same pattern for all services (as shown in Figure
4-1: General request flow). These components which are included in this flow, build up the
main base of the CANdesc component.

Prehandler optional Mainhandler Posthandler optional
{ { {

! ifiéscProcessingDone(); !

Diagnostics- OANdesc | me e e e e e e m e - - B

Check Svc Check Svcinst v
Check Session Check Format t

— positive Response

Request

negative Response

Figure 4-1: General request flow

©2013, Vector Informatik GmbH Version: 3.07.00 14 /164

Technical Reference CANdesc vector

4.1.2 How does this flow actually work?
The picture below shows a simply structured description of the module functionality.

Request reception

Dispatching the request

Idle mode/Awaiting request

4

Processing the request

Finishing processing of the
request

Figure 4-2: DESC run diagram

Lets assume that the component is currently in the “Awaiting request” state. In this state
it waits for the next diagnostic request and if it is needed — it provides also timing
monitoring.

Once a diagnostic request transmission was initiated from the transport layer, the
component enters in the state “Request reception”. If the reception is finished, further
physical requests will be blocked until the response is sent. Depending on the used OEM a
functional request in the ISO 14230 standard will be handled parallel* to physical request.
The ISO 14229-1 standard is more restricted to the parallel handling. Except the
TesterPresent Service no other service could be handled parallel.

! Not all services could be handled parallel.

©2013, Vector Informatik GmbH Version: 3.07.00 15/164

Technical Reference CANdesc vector

After the reception of the request is completed the request processing will be prepared.
The component is in the “Dispatching request” state. The processing of the request is
done at a task level within the next call of the DescTask() function.

First the SID is checked whether supported or not. If not a negative response
‘ServiceNotSupported’ (NRC $11) will be sent.

Next step is to check if the supported SID is permitted in the current Session (Diagnostic
Mode). If not, the negative response ‘ServiceNotSupportedinTheCurrentSession’ (NRC
$7F) is sent automatically by the CANdesc component.

1Byte n Bytes (n=0..N) m Bytes (m = 0..M)

& 'Y

SID | SID_EXT Application data

« L

Service instance qualification
“Request hedd

Figure 4-3: Request message mapping

After that the CANdesc component validates, if the sub-service (service instance) is
supported or not. This is implemented with a powerful binary search. If the service
instance is not supported, the request will be rejected with the corresponding error code
‘SubFunctionNotSupported’ (NRC $11, for service which have SubFunctions) or
‘InvalidFormat’ (NRC $13, for service with data identifiers).

For each service instance which is supported by the current configuration, the CANdesc
component knows the exact length of most requests. (Some requests use variable data
length elements thus a fixed length doesn’t exist.) If the length is known and it does not
match, the dispatcher will reject this request (dependent to the manufacturer specification).
If the complete request length is not known, the application has to do this job.

If the service instance is found, the state checks (e.g. ‘Security Level’) will be performed. If
all of them are passed then the component enters the state “Processing the request”in
the diagram above. This state consists of several parts that are represented in more
detailed structure shown below. The dotted lines reveal the optional parts for the
implementation. For example — the Pre-, Post- and SignalHandlers are optional and might
not be implemented.

©2013, Vector Informatik GmbH Version: 3.07.00 16/ 164

Technical Reference CANdesc vector

Request analyzed

PreHandler

MainHandler

Signal-Handler #0

Signal-Handler #1

Signal-Handler #k

PostHandler

Figure 4-4: Request processing stages

After the response is composed CANdesc must be informed about, to start the
transmission of the final response. CANdesc is doing the handshake with the Tester
(automatic transmission of RCR-RP) while the state “Processing the request” is active.

Within the end of the transmission the state “Finishing processing of the request” is
entered and the PostHandler (if configured) is called. In this PostHandler the application
has to do the closing (e.g. updating a state machine, prepare the ECU for a reset ...). The

session state for example (which is managed by CANdesc) is also updated in a
PostHandler.

©2013, Vector Informatik GmbH Version: 3.07.00 17 /164

based on template version 5.1.0

Technical Reference CANdesc

4.2 Application interface flow

42.1

Session- and CommunicationControl

vactor’

The services SessionControl and CommunicationControl are typically handled by
CANdesc. But the application still has the possibility to reject these service requests. You
can find a detailed description in chapter 12.6.6 Session Handling and in chapter 12.6.7
CommunicationControl Handling also.

(=]

}

Receive a Request

SID $10 SID $28 Supported Unsupported
(SID $29) SID $xx SID $xx
i ¢ A\
ApplDesc<PreHandler> ApplDesc<PreHandler> ApplDesc<PreHandler>
callback callback callback
4 A A
ApplDescCheckSessionTransition ApplDescCheckCommCtrl ApplDesc<MainHandler>
{ { {
I.DéécSessionTransitionChecked() ; I'DéécCommCtrlChecked() ; l;)éécProcessingDone() ;
} } }
Transmit
Transmit positive Transmit positive Transmit positive negative
response $50 response $68 response $xx response
NRC $11

WAIT WAIT WAIT
A A
TX acknowledge TX acknowledge TX acknowledge
$50 $68 $xx
A A A
ApplDescOnCommunicationEnabled
ApplDescOnSessionTransition ApplDescOnCommunicationDisabled ApplDesc<PostHandler>

>optional - not all OEMs<

v

©2013, Vector Informatik GmbH

| we [\

)

A

Version: 3.07.00

18 /164

Technical Reference CANdesc vector

5 Advanced Configuration

5.1 Configure DBC attributes for diagnostics

If the diagnostic messages shall be defined in the communication data-base file (DBC),
and not received via CANdriver ranges (e.g. in case of normal fixed or extended
addressing), the following attributes in the DBC file must exist and shall be set as shown
below.

Attribute Name Values Description

the default value is
written in bold

DiagRequest Message Enum No Specifies (Yes) that the message is a diagnostic
Yes physical USDT request message.

DiagResponse Message Enum No Specifies (Yes) that the message is a diagnostic
Yes USDT response message.

DiagState Message Enum No Specifies (Yes) that the message is a diagnostic
Yes functional USDT request message.

DiagUudtResponse Message Enum false Specifies (true) that the message is a diagnostic
true UUDT response message.

Table 5-1: DBC file diagnostic message attributes

©2013, Vector Informatik GmbH Version: 3.07.00 19/164

based on template version 5.1.0

Technical Reference CANdesc vector

6 CANdesc Configuration in GENy

Since version 6.00.00, the CANdesc configuration concept has been improved by splitting
the concrete ECU parameterization and software integration from the diagnostic
specification.

The configuration of CANdesc in GENy consists of two important steps:

- Importing a diagnostic description file. Currently only CANdela (CDD) files are
supported therefore in further only the term CDD file will be used.

- Setup all service options required by the application like:
o Configure the service handlers (pre-, main- and post-handlers)

o Setup the service specific settings, like maximum number of dynamically
defined items per DynDID, size of scheduler for periodic data reading, etc.

o Setup timing parameters (e.g. periodic rates).

The second step is optional, since after importing a CDD file all important settings will be
already prepared for usage. If there are missing or invalid settings, GENy will notify you at
generation time.

6.1 Step One - Importing an ECU Diagnostic Description
After activating the CANdesc component in GENy, you will have the following view:

{;} ECU Configurable Options IDiagnu:ustiu:_D:unfiguratinn
EIH' CDmD'F'ﬂE”tS — Diagnostic Specification

E‘ g;:- D|ag_!:anDe.sc_les. . Reload all description files

P @ Diagnostic_Configuration

% DwlCan_CanceemuCanoeH| CAhldels documert name

B3 GenTool_GenyPluginConfigD ocument: Selected CANdela Yariant

-5 Hw_CanosemuCpu Open in CANdels Studio

B B3 MameDecoratar

|: Communication

|- [TwMeszages
|- [RxMessages Disgnostic Buffer Size [0°

- My, Tw Signals
-l Fx Signals

| oy O g O O |

Figure 6-1 CANdesc GENy startup screen

At this time GENy does not have any CDD file and can not generate CANdesc. You have
to specify a CDD file, using the button on the option “CANdela document name”.

After selecting the CDD file, the CANdesc component tree view will look like:

©2013, Vector Informatik GmbH Version: 3.07.00 20/ 164

Technical Reference CANdesc vector

. ECU Configurable Options IDiagnnstic_Ennfiguratiu:un |

E‘“' Components |- Diagnostic Specification
=2 Diag_CarDesc_lUds

E'@ Diagnostic_Configuration

Reload all description files

- Service Table CAMdela document name | fProjectDils. 5. SCddsDemoE CULcdd
% States Selected CANdela Variart | CommanDiagnostics
@ Timings Open in CANdels Studio
""" & Secuiy [— Communication
Lt Seheduler : : :
B DreCan_CanoeemuCanoeHI Disgnostic Buffer ize 123
Info

=]

Please note, the diagnostic buffer size is now set to a non-zero value. At CDD import
time, GENy calculates a statistic over all services with simple, linear data structure and
sets the buffer size to fit the longest request resp. response message. The message
window will show you which service requires the suggested buffer size:

x
4

160: : Service Ox22 Oxffef ReadDidDemolnformation requires a buffer size of at least 123 bytes.

Y

3
=
=

-

L | Pl Hl*. Mez=zages

Complex services like reading the faultmemory information or

upload/download/transferdata are excluded from this statistic, since the worst case
response calculation is not possible.

You can still set another value for the buffer size, even lower as the size suggested by
GENy. At generation time, the code generator will check again the set buffer size and

consider more options you have changed (like RingBuffer support) and notify you if the
buffer size is too small.

Now you can try to generate your diagnostic layer, using the default settings.

6.2 Step Two — ECU Diagnostic Configuration in GENy

Once the CDD content is imported, there are several options that can and shall be set up
for best match on your ECU integration needs.

©2013, Vector Informatik GmbH Version: 3.07.00 21/164

Technical Reference CANdesc vector

What You Can Configure in GENy

The goal of splitting the ECU integration configuration from the ECU diagnostic
specification is to provide a simplified view on what the ECU diagnostic application
developer is able to configure without danger of changing the diagnostic specification
provided by the OEM.

If a CANdesc parameter is not available in the source diagnostic description (CDD file),
you will be able to edit it in GENy, even if it is relevant for the diagnostic specification.

The chapters below will show you all configuration parameters of CANdesc that can be set
up in GENYy.

What You Can Not Configure in GENy

All diagnostic parameters that could affect the ECU behaviour regarding its diagnostic
specification, provided by the concrete OEM or would lead to inconsistency between the
tester expectations on the ECU behaviour are not editable in GENYy. If a change is required
on such a parameter, the diagnostic description source shall be modified, to guarantee that
the OEM or/and the tester will take this change into account.

6.2.1 Global CANdesc Settings

Under the generic settings you will find the options that affect the overall module
performance, independently of the diagnostic services that shall be supported. In the
picture and the table below follows the description of the settings for CANdesc.

{2} ECU Corfigurable Options | Diag_CanDesc_Uds2012
= H' Cnmpu_:nnerrts | CANdesc
2 (Déag;ia_r‘ctj':;;;id_s\f:;ir_L CANdesc Version §.13.00 {ouid 150)
£ Hw_CanoeemuCpu Cycle Time [ms] 10
GenerateCANdesc [
Flashable ECU 1
Ring Buffer Suppert |:|
Forced RCR-RP Response |:| *
Repeated Service Call Type Always J
Production Mode m
Spontaneous Response |:|
User Config File D:"-.‘.".l'portﬁ_s.aace_:.'l'slc{Sjand.aLdEiNfl B
|: Generic Processing Notifications
Supplier Notification Support |:|
Manufacturer Netification Support |:|
|: Unknowen Service Processing
Unknown Services Acceptance |:|
Unknown Services Post-Handler Calls |:|
|: Debug Support
Application Interface Asserions |:|
Internal Assertions [l
[— DANIS drivers
List of DANIS drivers |[Add]
|: Miscellaneous
Wariant Mode Selection |SIMF‘LE_ECL| J

Figure 6-2 Example of GENy global CANdesc settings

©2013, Vector Informatik GmbH Version: 3.07.00 22 /164

Technical Reference CANdesc

Attribute Name

Availability

Values

The default
value is written

Value Type

vactor”

Description

Cycle Time [ms]

Generate CANdesc

Number of ‘Busy-
RepeatRequest’
responded
Requests

OEM dependent
availability.

Flashable ECU OEM dependent

availability.

Ring Buffer Support

©2013, Vector Informatik GmbH

Always available.

Always available.

Always available.

in bold

Integer 10
1..255

Button

Integer 0
0..255

Boolean False
True

Boolean False
True

Version: 3.07.00

based on template version 5.1.0

The DescTask (resp.
DescTimerTask) function must be
called EXACTLY in the time period
specified here.

This is important since the time
constant will be converted into a
number of function calls and if this
setting doesn't match the real call
cycle, the component internal
timeout monitors will not function
properly.

This feature is only available after
you have generated the whole
CANbedded package.

NOTE: If you run into problems,
generate the whole package again!

The value is the maximum count of
parallel handled diagnostic
requests. Only the first diagnostic
request will be processed, all other
(additonal) request, which will be
received while the first one is in
process, will be also received, but
only responded with NRC $21
('BUSY - repeat request’). If there
are more requests onto the bus
than this number, only the first N
will be responded - all other will be
just ignored.

Depending on the car
manufacturer this option has
different effects. Please, see the
OEM specific technical reference
document for more information.

In case your ECU shall send a
very long positive response for
some services (usually when
reading fault memory) you can
reserve enough RAM for the
diagnostic buffer to handle the
longest possible response length,
or you can use the built-in ring-
buffer mechanism which allows
usage of smaller buffer. The linear
buffer usage saves ROM and run-
time but needs more RAM, the
ring-buffer saves RAM (you may
send 4095 Byte response with a
20Byte buffer) but requires more
ROM and causes run-time
overhead when used. NOTE: This

23 /164

Technical Reference CANdesc vector

Attribute Name | Availability Value Type | Values Description

The default
value is written
in bold

option just unlocks the built-in
support, but the selection usage of
the feature is done at run-time by
your application (for each service
independently).

) In some cases (e.g. prior jump into
Forced RCR-RP OEM dependent Boolean False
Response availability. True the FBL (FIashBootLoader), ECU

busy so no task function can be
called for long period of time) it is
necessary to prevent the tester
from ECU response timeout.
Enabling this feature you will be
able to send a RCR-RP
(ResponseCorrectlyReceived-
ResponsePending) response any
time during an active serivce
processing (main-handler called
but no DescProcessingDone has
been called yet).

Repeated Service Always available. Enum Deactivated In some cases (usually for slow
Call Type Always services like reading from
Individual EEPROM) it is useful to let the

component to poll your application
(service main-handler) until the
service execution is completed.
Otherwise you have to leave the
service's main-handler function
and trigger an own additional
polling task and finalize the service
from there. Using the built-in
polling mechanism you will save
ROM and run-time. Also it prevents
from confusing code structures.

Always: Each main-handler will be
called as long as the application
didn’t call DescProcessingDone().

Individual: Each main-handler will
decide by itself if it will be called

once or as long as the application
didn’t call DescProcessingDone().

Production Mode OEM dependent Boolean False Enabling the production mode will
availability. True set all options in the possible
safest (uncritical) value.

Some car manufacturers don't
allow all of the features in
production, so they will be turned
off.

This setting enables the possibility

Spontaneous Available if Service Boolean False . ?
Response 0x86 is part of the True to send diagnostic responses
diagnostic W|t_hout a pre_cedlng request. _
configuration. This feature is needed for Service
0x86 with Transmission Type I.
©2013, Vector Informatik GmbH Version: 3.07.00 24 /164

based on template version 5.1.0

Technical Reference CANdesc

Attribute Name

Availability

Value Type | Values

vactor”

Description

The default
value is written

Supplier Notification

Support

Available if
CANdesc
according to ISO
14229-1 2012 is
used.

Boolean

in bold

The spontaneous response can be
triggered via the API
DescSendApplSpontaneousRespo
nse.

False If this option is enabled, CANdesc

True notifies the application on incoming
service requests and outgoing
responses. CANdesc only notifies
the application if the requested

service is supported in the active
session and security state. For
more details see 10 Generic
Processing Notifications

Available if Boolean False
CANdesc True
according to 1ISO

14229-1 2012 is

used.

Manufacturer
Notification Support

If this option is enabled, CANdesc
notifies the application on incoming
service requests and outgoing
responses. CANdesc notifies the
application right before the
processing of the request starts
and after a response has been
sent. For more details see 10
Generic Processing Notifications

Unknown Services
Acceptance

OEM dependent Boolean False
availability. True

In some cases if the diagnostic
database doesn't contain all
necessary service Ilds, or you need
a (some) test identifier(s), you can
enable this option which will
redirect all received requests with
unknown service Ilds to your
application for additional
acknowledgment and processing.

Unknown Services
Post Handler Calls

OEM dependent Boolean False
availability. True

If the option 'Unknown Services
Acceptance' is enabled, you may
use this feature to be notified each
time an unknown service
processing has been
accomplished. This post handler
usage is the same as the one of
the normal services post handlers.

Application Interface Always available. Boolean False
Assertions True

The SW component provides built-
in debug support (assertion) to
ease up the integration and test
into the project.

In general, the usage of assertions
is recommended during the
integration and pre-test phases. It
is not recommended to enable the
assertions in production code due
to increased runtime and ROM
needs. The assertion checks the
correctness of the assigned

©2013, Vector Informatik GmbH Version: 3.07.00 25/164

based on template version 5.1.0

Technical Reference CANdesc vector

Attribute Name Availability Value Type | Values Description

The default
value is written
in bold

condition and calls an error-
handler in case this fails. The error
handler is called with an error and
line number. You can find
information about the defined error
numbers in the Desc.h file.

Internal Assertions Always available. Boolean False The SW component provides built-
True in debug support (assertion) to
ease up the integration and test
into the project.

In general, the usage of assertions
is recommended during the
integration and pre-test phases. It
is not recommended to enable the
assertions in production code due
to increased runtime and ROM
needs. The assertion checks the
correctness of the assigned
condition and calls an error-
handler in case this fails. The error
handler is called with an error and
line number. You can find
information about the defined error
numbers in the Desc.h file.

List of DANIS Always available. String List Add an arbitrary list of DANIS
drivers drivers for custom bus access.

Each entry here will result in a user
driver, which can be used to
connect CANdesc to arbitrary
transport layers.

Example:

Adding a driver name “MostTp” will
force CANdesc to generate
templates for a driver with this
name. You will have only to
implement the functions of the
driver skeleton.

UUDT Message Available only if Integer 100 This is the maximum time after

Confirmation UUDT message 1..65535 which a UUDT (Unacknowledged

Timeout [ms] transmission is Unsegmented Data Transfer)
supported. message will be deleted from the

CAN drive request queue and (if
possible) will be replaced by the
next queued message.

Faultmemory Available only if Integer 0 Limit the iteration depth for
Iteration Limiter CANdesc provides 0..255 faultmemory read services.
fault-memory
service
©2013, Vector Informatik GmbH Version: 3.07.00 26/ 164

based on template version 5.1.0

Technical Reference CANdesc vector

Attribute Name Availability Value Type | Values Description

The default

value is written

in bold

implementation. Some faultmemory ($19) services

can consume much runtime when
performed en bloc. To reduce the
run time of the CANdesc task, use
this option to limit the iteration
depth of the faultmemory access
function so your controller can
handle the workload.

ATTENTION: Depending on your
Tp timeout settings, to low a
number of iterations can result in
an aborted transmission due to
buffer underrun.

A value of 0 (zero) will disable any

limitation.
Variant Mode OEM dependent Enum None Note: This setting is independent
Selection availability. Multi Identity from communication identities!
{\//IggeMode None: The diagnostics support one

configuration only.

Multi Identity Mode: The
diagnostics support different
diagnostic variants. One variant is
active a time.

VSG Mode: Diagnostic Entities
(SubServices, DTCs...) are
grouped into VSGs. Several VSGs
can be active at a time.

6.2.1.1 Generic Processing Notifications (UDS2012)

On activation of the feature “Generic Processing Notifications”, GENy shows the names of
the additional callbacks that will be generated. The names of the callbacks are fixed and
can not be modified (see Figure 6-3). For a detailed description of the feature see chapter
10 Generic Processing Notifications.

|: Generic Processing Motifications
Supplier Motification Support
Supplier Indication Function Name ApplDescSupplierindication™
Supplier Confirmation Function Mame ApplDesc SupplierConfimation™
Manufacturer Motification Support
Manufacturer Indication Function Mame ApplDescManufacturerindication™
Manufacturer Confirmation Function Name ApplDescManufacturerConfirmation™

Figure 6-3 Activated feature “Generic Processing Notifications”

6.2.2 Service Specific Settings

Once the CDD file is imported you can have an overview of the supported services of your
ECU:

©2013, Vector Informatik GmbH Version: 3.07.00 27 /164

based on template version 5.1.0

Technical Reference CANdesc vector

f} EEUC = CANdesc
- "
7 'FJ. ?;mgfanfCZnDesc Uds Esecution Service Level Callback Functions
= ¥ Secuitybcoess Pre Handler Main Handler Paost Handler
B4 Diagnostic_Configuration
= 4@ Sarvice Table Programing| ExterdedDiagrostic] E9E | Lacked| Un tocked L1[Un tocked 13] PreHandler Support| MainHandler Function Name | PastHandier Suppart
~Lgl] $01 - ProcessOBD S ervicell $01 - ProcessOBDService1 v v v v I v
% igg) Erncessggggarwcegg $02 - ProcessOBDServicel2 | @ =2 F |F =2 ~ r: ppiDescPracessOBD Gervice2 |7+
- o 303 - ProcessCBDServiceld | @ ~ ¥ | ~ 2 r: ApplDescProcessOBDSeviceld (7=
-Lgl] $04 - ProcessOBD S erviceld
L&) 406 - ProcessOBDS ervicelf $04 - ProcessOBDService0d | 7 ~ ¥ | ~ Icd r: ApplDescPracessOBDServiced |7+
- $07 - Process0BDSenvice? $06 - ProcessOBDServicels | [7 [F F |F [r- AppiDescPiosessOBDSenicsls | *
. % :gg : Emcessggggewcegg L = ety || 1 v |F 1 v [ApplD escProcessOBD Sevicel? [+
- Process ervicel
(5] $04 - ProcessOBDServicslls P = e tEbEeinetl || ~ ¥ |F ¥ 2 [AppDescProcessOBDServicels ([~ *
F-\Z) $10 - DiagSessionControl $09 - FrocessOBD3erviceds || ~ ¥ | ~ ™ : &ppiDescProcess0B0 Services | [T+
E-Lgl) $27 - Securitpccess FOA. - ProcessOBDServicelA |7 [~ F |F =3 ~ = ppiD escProcessDBD Seviceld [+
& % $3E - TesterPresent %10 - DiagSessianCartrol Fd 73 ¥ @ =3]
28 411 - EcuReset
(g $19- ReadDichnio BSEe i F L |]
=) @ 414 - ClearDiaglnfa 514 - ClearDisginfo [~ Ird ~ ~ 7
E-Lg) 485 - CantolDteS etting 19 - ReadDioinfo [[F F |F [
I T T — i —
2 - WriteD1atal
Qg 424 - Readd ataEiPelindicld $23 - ReadiemoryByAddress | [1 M |+ ~ I~ * £pplD escR eadMemonyBysddress | [*
E-Ag) $2C - DynamicalyDefineD atald F27 - SecurityAccess Ird = ~F |F 74 ~
[@ $31 - RoutineContral $28, - ReadDataByPeriodicld ~ = I~ ~ = ~
% $34 - RequestDownioad F2C - DyramicallyDefinelatald | 7 3 ¥ IF |F &
L5 $35 - RequestUpload :
gl 823 - ReachomonBybddess | | [WieCaaENd i E F_ ¥ ¥ =
L) $30 - WiiteMemaonyB yiddress $31 - RoutineControl I 14 ¥ |F ~ I
gy $36 - TransferData $34 - RequestDownioad 2 I ¥ |+ I ~ r: AppiDescRequestDownload [ml)

Figure 6-4 GENy diagnostic service overview

On this level you can also configure all services that will be supported on service Id level
only.

6.2.2.1 Generic Service Settings

Using the CANdesc component tree view you can explore the detailed settings for each
service and its sub-services (if available).

A generic sub-service setup looks like the picture below:

©2013, Vector Informatik GmbH Version: 3.07.00 28 /164

Technical Reference CANdesc

vactor”

{;} ECU _* | | Configurable Options |$D2 - ReadDteRDTCES M
E“‘ Eu:umpu.:unentx |- General Settings
& Eéo %;ag[_)!:anD et.sc_l:l_l dsf, i |: Service Execution
iagnastic_Configuration :
E@ Service Table Support Physical Reguest F*
----- (&) $07 - ProcessOBDServicel] Support Functionsl Reguest W
..... (& 302 - ProcessOBDServicel2 - Service Respanse
..... (&) $03 - ProcessOBDServicel3 Suppart Physical Response .
----- L&) $04 - ProcessOBDServicald : v
----- (&) $06 - ProcessOBDServicels Support Functionsl Responee | [+
----- (&) $07 - ProcessOBDS ervicel? |- Service Execution
----- @ $08 - Proce::0BDService0B |- Session
----- @ $09 - Procesz0BDService03 Defaut "
----- L&) $04 - Frocess0BDServiceld : v
=-Lg) $10 - DiagSessionControl Frogramming il
= . Service Instances ExtendedDiagnostic ¥
------ @ %07 - StantSessionD efault ECLExtendedDiagnostic p
------ o[$02 - Start essionProgrammir T
------ o[3 $03- StanSessionExtended ~ =
------ L [B) $40 - StanSessionE OLE stenc Locked ~
[+ @ $27 - Secuntpdooess Un_locked_L1 ~
- % $3E - TesterPrezent Un_lacked_L3 7
- $11 - EcuReset ¥
— CAN
=-Lg) $19 - ReadDicinfo [CANdese
= . Service Instances Bt Rl
------ 2] $01 - ReadDtcRNODTCESM PreHandier Support B
- % $02 - ReadDcRDTCBSM | Main Handier
b %04 - ReadDcRSUPDTC - -
i MainHandler Function K
» 2 $04 - ReadDicRDTCSSEDTI ainHancler Function Mame |ApplDescHeathcHDTEBSM
~[2) $06 - ReadDtcRDTCEDRED |- Post Handler
2 $03-ReadDIcRDTCSS| PostHandler Support '
-B IS)

Figure 6-5 GENy generic sub-service setup

Almost all services have a very simple configuration view. You can see the main-handler is
always available and a preview of the call-back name is shown.

You can only add a pre- and / or a post-handler to such a service, if required.

6.2.2.2 Predefined (implemented) Services in CANdesc

There are configurations (OEM dependent) where several services are fully implemented
by CANdesc. Such service can be, StartDiagnsoticSession, SecurityAccess,
DynamicallyDefinedDataldentifier, ReadDataByPeriodicldentifier, etc.

Those services that will not be handled by the application are marked in GENy as shown
on the picture:

©2013, Vector Informatik GmbH Version: 3.07.00

29/164

Technical Reference CANdesc

vactor”

&5 Bl
EI“' Comporents
= E# Diag_CanDesc_U

El-§ Service T
@ $0
g sz
@ $03
@ 304
@ 406 -
@ $07
gy $08
@ $09
=g $10-

&L $27
=-Lg) $3E
E-Lg $11
=-g) $19
=L $14
-Lg) 485
=g 322
-Lg) $2E
=-lg) 328
L) $2C
=-lg 31

dz

EI@ Diagriostic_Configuration

able

- Procesz0BDService0l
- Process0BDServicel2
- Procesz0BDServicel3
- Process0BDService0d

Frocesz0BDServicelE

- Process0BDServicel?
- Process0BDServiceld
- Procesz0BDService0d

FrocessOBDS ervicela
DiagSessionControl

E-[F Service Instances

[B1 $01 - StartSessionDefault

[E) $02 - StantS essionProgrammit
[B1 $03 - Start5 essionF stended
“o [B] $40 - StantS essionE OLEstenc
- Secuntwicoess

- TesterPresent

- EcuReset

- Readltcinfo

- ClearDiaglnfo

- ControlDtcSetting

- ReadDataByld

- WwiitellataBiyld

Configurable Options

| $07 - StartS essionD efault

|: General Settings

|: Service Execution

Support Physical Reguest W=
Support Functional Reguest W=
|: Service Rezponze
Support Physical Responze 7 -
Support Functional Response V-
|: Service Execution
|— Session
Detault Ird
Programming Ird
Extendedbiagnostic W
ECLExtendedDiagnostic Ird
|: SecurityAccess
Laocked Ird
Un_locked_L1 Ird
Un_locked_L3 W
|: CAMdesc
— Pre Handler
|_ PreHandler Support [:Ft:]
[— Main Hancler P

- ReadD ataByPeniodicld e
- DynamicallyDefinel atald
- RoutineControl

Figure 6-6 GENy predefined sub-service setup

MainHandler implemented by C.&.Ndescu v

Mt

|: Post Handler

p—

PostHandler implemented by CANdescL| "l)

As you can see, the main-handler is grayed and marked as “implemented by CANdesc”.
The same can apply (depends on the service) also to the pre- and post-handlers of the

service.

In the example on the Figure 6-6 GENy predefined sub-service setup you see that the pre-
handler is still free for usage. This means you can still implement a pre-handler to check
additional conditions prior CANdesc will be able to process the service. For other service it
could be also the post-handler free for implementation.

There are several services that make some exceptions to the predefined implementation

rule:

©2013, Vector Informatik GmbH

Version: 3.07.00

30/ 164

Technical Reference CANdesc vector

Service 0x2A:

- PreHandler configuration is possible: If a pre-handler is required, it must be
enabled on all sub-functions of the concrete DID. The pre-handler name will
be “ApplDescPreReadPeriodicDid<DID instance name>".

- PreHandler on “stop all” is not used by CANdesc and will not be considered
during the code generation even if it is enabled.

- Main-Handler are set to “implemented by CANdesc” since the data reading
call-back will be the corresponding 0x22 DID service call. This means that if
the corresponding service 0x22 DID has been set to use the “Signal API”, the
periodic reading service will use it too.

- Post-Handlers are not supported at all.

Service 0x2C:

- PreHandler configuration is possible: If a pre-handler is required, it must be
enabled on all sub-functions of the concrete DID. The pre-handler name will
be “ApplDescPreDynDefineDid<DID instance name>".

- PreHandler on “clear all”’ is not used by CANdesc and will not be considered
during the code generation even if it is enabled.

- Main-Handler are set to “implemented by CANdesc” since the DID definition
is always done by CANdesc.

- Post-Handler are not supported at all.

6.2.2.3 Signal Access Enabled Services

Some services such as the UDS ones 0x22/0x2A and Ox2E, can be processed on signal
level. This means CANdesc will analyze the request/response data structure and generate
the service main-handler, leaving to the application only the task to provide the signal
values for the response, resp. to write the requested signal values to the ECU memory.

The setting view of such a service is shown below:

©2013, Vector Informatik GmbH Version: 3.07.00 31/164

Technical Reference CANdesc

vactor”

E@ Dhiagnostic_Configuration

EI@ Semvice Table

----- @ $071 - Process0BDServicel
- Procesz0BDServicel2
- Procesz0BD S ervicel3
- Procesz0BDService0d
- Process0BDService0B
- Procezz0BDService0?
- Procesz0BD S ervice(d
- Procesz0BDService0d
- Procesz0BDServiceld,
- DiagSezsionControl

£

[]---@ $27 - Secunityicoess

#-LE) $3E - TesterPresent

I:I---@ $11 - EcuReset

#-Lg) $19- ReadDtelnfo

#-Lg] $14 - ClearDiaglnfo

#-LE] $95 - ControlDteSetting

=-kg) $22 - ReadD ataByld

- [F Service Instances

- [2] $FFEF - ReadDidDemolrforr
-2 $0202 - ReadDidDID_0202_|
- [$0100 - ReadDidDID_D100
#-[E $F110- ReadDidDID_F110_—
-2 $F111 - ReadDidDID_F111_|
w2 $F113 - ReadDidDID_F117 |
- [$F15F - ReadDidDID_F15F_|
#-[2 $F1E62 - ReadlidDID_F162_t
- [2) $F163 - ReadDidDID_F163 |
-2 $F15E - ReadDidDID_F166,_|
- [2) $F167 - ReadDidDID_F167_|
[Z1 $F17C - ReadDidDID_F17C_
i [E4 #0100 Dea-AMGARID CH00 4

Canfigurable Options |$FFEF - ReadlidD emal nfarmation
|: General Settings
[— Service Execution
Support Physical Regquest | #
Support Functional Request | 7 +
|: Service Response
Support Physical Response [+
Support Functional il
|: Ser;ice Execution
[— Ses=sion
Defaut I~
Programiming ™3
ExtendedDiagnostic I~
EOLExtendedDiagnostic |
|: SecurtyAccess
Locked I~
Un_locked_L1 ™3
Un_locked_L3 I~
|: CAMdesc
[— Pre Hancler
PreHandler Support |r *
[— Main Handler
(Signal A r-)
MainHandler Function Mame | 4nplDescReadDidDemol nfarmation
[— Fost Handler
PostHandler Support |r 4

Figure 6-7 GENy signal API enabled sub-service setup

Note: For the read dynamically defined DID service, there is no signal access since they
are always implemented by CANdesc internally.

If the “Signal API” option is not enabled this service is to be implemented like any other
diagnostic service. The data object specific settings, described below, will have no effect

on the code generation.

If the “Signal API” option is enabled, CANdesc will generate per default a call-back function
for any data object (signal) the service contains. You can specify more options on each
signal, to achieve the maximum advantage of CANdesc — fully implemented diagnostic

service.

©2013, Vector Informatik GmbH

Version: 3.07.00

32/164

Technical Reference CANdesc

vactor”

Cu
H‘ Components
-3 Diag_CanDesc_ConnectorCaM
L—_I @0 Diag_CanDesc_Uds

= @ Diagnostic_Canfiguration
B @ Service Table
----- @ $071 - Procesz0BDServicell
----- 2] $02 - ProcessDBDServicel2
----- @ $03 - Procesz0BDServicel3
----- 2] $04 - FrocessDBDServiceld
----- @ $0E - Procesz0BDServicelB
----- 2] $07 - FrocessOBDService?
----- @ $08 - Procesz0BDService08
----- &) $09 - FrocessOBDServiceld
----- @ $08 - Procesz0BDServiceld
$10 - DiagSeszionControl
$27 - SecurityAccess
$3E - TesterPresent
$11 - EcuReset

L
L&)
L
&)
H-Lg] $19 - ReadDtelnfo
LB
- LE)
g
=

Eli:}

| A o O o Oy O sy O o O |

- ControlDbeS etting

e

[

$55
$22 - ReadD ataByld
‘& Service Instances
=[] $FFEF - ReadDidDemalnforr
= Du]] Data Dbjects
------ E]II]] Demol at
l @ $0202 - HealedDID 0202

Configurable Options I DemaoD ata
|: General Settings
size [Byte] 120
[— CAhcesc
Signal Handler Type |Signal Hander =

|: Signal Handler

SignaHandler Function Base Mame |Demu:uDataDemu:ulnfu:urmatiu:un

$14 - ClearDiaginfa |-

Figure 6-8 GENy signal view of a sub-service

You can have three types of signal handling:

Configurable Ophionz | Demol ata
|: General Seftings
Size [Byte] | 120
[— CAMNdEss
Signal Handler Type Signal Handler j
|— Signal Handler Constant
SignalHandler Function Base Name poignal Handler

Figure 6-9 GENYy signal handler types

FAQ

¥)

I

! Constant is only possible if the CDD file has contained constant value for the selected data

object. You can not specify in GENy a constant value for a signal handler.

In case of selected “Direct Access” signal handling, the following options will be enabled:

©2013, Vector Informatik GmbH

Version: 3.07.00

33/164

Technical Reference CANdesc vector

Configurable Options | Demol ata
|: General Settings
Size [Byte] 120
[— CAMNdess
=Zignal Handler Type |Direu:t Access j
|: Direct Access
Signal Yariakle Mame Demolata
Signal Wariahle Prototype R am j
Conzt
I ser

Figure 6-10 GENy direct access signal handler settings

Attribute Name Availability Values Description

The default value is
written in bold

Signal Handler Type Only for signal APl Enum SignalHandler Select the type of signal handler
enabled services. Constant

DirectAccess)
Constant: The data value is

constant. The data value can be
used directly. This is used only
when the corresponding
subservice uses a signal APl main
handler.

Signal Handler: Use a callback
function to get/set the data value.
This function is used only when the
corresponding subservice uses a
signal APl main handler.

Direct Access: Directly use a
variable to access the data object.
Also, a signal APl main handler
has to be used for this setting to
have any effect.

SignalHandler Only for signal APl String <DataObjectQ This value is used as base for the
Function Base enabled services ualifier>+<Dia signal access function - depending
Name and a signal ginstanceQual on how the value is used, the
access through a ifier> name entered here is prefixed with
SignalHandler is different prefixes, e.g
selected ApplDescRead / ApplDescWrite.

You can override the default name,
by specifying an own signal base.
The Prefix (e.g. ApplDesc can not
be overridden).

Signal Variable Only for signal APl String <DataObjectQ The name of the signal variable.
Name enabled services ualifier>
©2013, Vector Informatik GmbH Version: 3.07.00 34 /164

based on template version 5.1.0

Technical Reference CANdesc vector

Attribute Name | Availability Values Description

The default value is
written in bold

and if Example:
DirectAccess

signal handling is c_dataTemp .
selected g_applData.bit0
Signal Variable Only for signal APl Enum Ram To create the proper extern
Prototype enabled services None declaration to access the signal
and if Const variable, the proper access
DirectAccess User modifiers have to be specified.
signal handling is
selected)
None: No prototype is generated at
all. "DescType.h" where the user
has to define the real typedefs (for
structure access for example).
Ram: The variable is located in
RAM.
Const: The variable is located in
ROM.
User: Set a user defined prototype.
Signal Variable User Only for signal APl String Empty Set the prototype of the signal
Prototype enabled services variable.
and if .
E le:
DirectAccess xamp'e
signal handling is boolean
selected EcuTempType

and if the Signal
Variable Prototype
is set to User

6.2.3 Timing Settings

GENy imports all possible timings that the diagnostic description source provides. Those
parameters that are available in the CDD file are considered as a part of the ECU
specification and are not modifiable in GENy. If a modification of those parameters is
required, please change their values in the diagnostic description file and re-import it in
GENy.

All other parameters can be set up manually, but the default value already matches the
OEM specification.

©2013, Vector Informatik GmbH Version: 3.07.00 35/164

based on template version 5.1.0

Technical Reference CANdesc

vactor”

..... g $0e-

B4 States

H-4% State

----- R Timin

03

the delay time, delay time on power on, etc.

-4 Service State Overview

Procezs0BDServicels, ;l

- DiagSessionControl

- Securitwhooess

- TesterPresent

- EcuReset

- AeadDtcinfo

- ClearDiaglnto

- ContralDteSetting

- ReadD ataByld

- wiriteD ataBold

- ReadD ataByPeriodicld
- DpnamicallyD efinel atal d
- RoutineControl

- RequestDownload

- RequestU pload

- ReadtemaryBwiddress
-wiriteMemomnBydddress
- TranzferD ata

- RequestT ransferk «it

- _BA_Supplier_Service

- _BE_Supplier_Service
-_BC_Supplier_Service

- _BD_Suppler_Service
- _BE_Supplier_Service

Groupz

Configurable Optionz | Timings
|: General Settingz
Tester Timeout [ms] |5|:||:||:|
|: P2 Timeouts
[— Dretfault
P2 Timeout [ms] B0
P2* Timeout [ms] 5000
|: Programming
P2 Timeout [msz] 25
P2* Timeout [ms] B000
|: ExtendedDiagnostic
P2 Timeout [ms] B
P2* Timeout [msz] 000
|: ECQLExtendedDiagnostic
P2 Timeout [m:z] B0
P2* Timeout [mz] 000

Figure 6-11 GENy CANdesc timing parameters

6.2.4 Security Access Settings (UDS2006)

If the security access service is implemented by CANdesc (see the service handler on the
service 0x27 instances), you can set here the level specific attributes, like attempts to start

Caution

&D

It is OEM specific property whether the security access parameters will be evaluated
security level specific or not. In case the security access service specification of the

concrete OEM requires only global configuration of these options, the code generator
will calculate the maximum value over all levels for each parameter and this value will
be used by the service implementation in CANdesc.

Example: Level 1 has “Attempt Counter” = 1, and Level 2 has for the same parameter =

3. CANdesc will use then for “Attempt Counter” = 3 for all security levels.

©2013, Vector Informatik GmbH

Version: 3.07.00

36/ 164

Technical Reference CANdesc

vactor”

A& $0& - ProcessOBDService0d =] | Configurable Options Security
@ $10 - DiagSessionCantral — General Seftings
@ 327 - Securitpbooess '~ Locked
@ $3E - TesterPresent
@ $11 - EcuReset Atempt Courter 0
#-Lg) $19- ReadDtclnfo Initial Delay [mz] Iy
% $14 - ClearDiaglnfo PoerverOn Delay [ms] 0
385 - ControlDtcSetting
m-Lg) $22 - ReadD ataByld - Ehoskea
m-Lg) $2€ - wiiteDataByld Aftempt Counter o
+-Lg) $24 - ReadDataByPeriodicld Initisl Celary [ms] o
@ $2C - DynamicalyD efineD atald Poravercn Delay [ms] g
$31 - RoutineContral
----- % $34 - RequestDownload L
~Ag] $35 - RequestUpload Aftempt Courter 0
~Ag] $23 - ReadMemonBydddiess Initial Delay [mz] 0
----- @ $30 -whitebemoryBdddress PorverOn Delay [ms] g
o @ $36 - TransferData
----- @ $37 - RequestT ransferk it
----- @ $B4 - _BA_Supplier_Service
----- @ $BE - _BE_Suppler_Service
----- @ $BC - _BC_Suppler_Service
----- @ $B0 - _BD_Suppler_Service
e @ $BE - _BE_Supplier_Service

F-4 5 States

-4 State Groups

-4 Service State Overview
-----) Timings

----- B Security

----- ot Scheduler

Figure 6-12 GENy CANdesc security access parameters

Attribute Name Availability Value Values Description

Type The default value is
written in bold

Attempt Counter Only if the Integer 0 Specifies the maximum number of
SecurityAccess 1..255 failed attempts to unlock the ECU.
state group is If this number is reached, a delay
available for the next security access try will

be inserted.

If a non-zero value is entered, the
delay time must be set to a non-
zero value too.

Note: This parameter has only
effect only if the SecurityAccess
service is handled by CANdesc.

Initial Delay [ms] Only if the Integer 0 Specifies the delay time after the
SecurityAccess 1..65535 maximum retry attempt count has
state group is been reached.
available

If a non-zero value is entered, the
©2013, Vector Informatik GmbH Version: 3.07.00 37/164

based on template version 5.1.0

Technical Reference CANdesc vector

Attribute Name Availability Values Description

The default value is
written in bold

attempt count must be set to a
non-zero value too.

Note: This parameter has only
effect only if the SecurityAccess
service is handled by CANdesc.

PowerOn Delay [ms] Only if the Integer 0 Specifies the delay time at power
SecurityAccess 1..65535 on.
state group is
available

If a non-zero value is entered, the
delay time must be set to a non-
zero value too.

Note: This parameter has only
effect only if the SecurityAccess
service is handled by CANdesc.

6.2.5 Security Access Settings (UDS2012)

Due to the new features in CANdesc UDS2012, the configuration of the security levels in
GENy has changed.

£} ECU Configurable Options | Security

BH‘ Componerts |- General Settings
=-E# Diag_CanDesc_lUds2012

EI@ ECU_CommonDiagnostics Lewvel Specific Failed Access Attempt Supervigion |‘
: -4 Service Table |— o
[-&% States Use Static Seed *
i ai £m ounter to Delay
@ Timings Failed Attempt Counter to Del (g
... [
_ @ er Failed Attempt Delay [mz] o
o B Hw_uc;noeemuCpu PowerOn Delay [ms] Ly

|= Unlocked_L2
Use Static Seed
Failed Attempt Counter to Delay
Failed Attempt Delay [ms]

PowerOn Delay [ms]

S IEIEE

Figure 6-13 Security settings in GENy

Attribute Name Availability Values Description

The default value is
written in bold

Level Specific Failed Only if the Boolean False Switch to select whether a global

Access Attempt SecurityAccess True false attempt counter and delay

Supervision state group is timer for all security levels shall be
available used (false) or if each level has its

own false attempt counter and
delay timer (true).

Use Static Seed Only if the Boolean False For each level can be selected if a
SecurityAccess True static seed is used (true) or not
state group is (false). Static seed means that
©2013, Vector Informatik GmbH Version: 3.07.00 38/ 164

based on template version 5.1.0

Technical Reference CANdesc

Attribute Name

Availability

Values

The default value is
written in bold

vactor”

Description

available

Failed Attempt Only if the
Counter to Delay SecurityAccess
state group is
available
Failed Attempt Only if the
Delay [ms] SecurityAccess
state group is
available

PowerOn Delay [ms] Only if the
SecurityAccess
state group is
available

6.2.6 Scheduler Settings

Integer

Integer

Integer

Value
imported from
the Cdd file.
0..65535

Value
imported from
the Cdd file.
0..65535

Value
imported from
the Cdd file.
0..65535

CANdesc stores the seed and re-
uses the seed in a positive
response to a seed request for that
level, until the level is unlocked.

The number of failed security
unlock attempts allowed before a
delay is imposed between
attempts.

The delay time in ms which is
imposed if the Failed Attempt
Counter limit has been reached.
Further security access attempts
are discarded, until the delay has
expired.

The delay time in ms which is
imposed when the ECU is
powered on. Requests to unlock
the security level are declined until
the delay has expired.

If the ECU shall support the periodic data reading service, the following settings are
relevant and shall be setup to match the ECU performance and RAM resource availability.

©2013, Vector Informatik GmbH

Version: 3.07.00

based on template version 5.1.0

39/164

vactor”

Technical Reference CANdesc

El- B Diag_CanDesc_ds ;l Configurable Options

E ':E:" DiagnDstic_EaniguratiDr‘l |: General Settings
I-¥@ Service Table

| 5cheduler|

Maximum Count of Scheduled tems |1|:|

""" &) $07 - Process0BD Servicell

""" Lzl $02 - ProcessDBD Service02 RlFesi stz

----- Lzl $03 - ProcessDBD Service03 Scheduling Rate [ms] |2|:|
""" % $04 - Process0OBD Service04 |~ Medium Schedule

----- $06 - Process0B0 Servicel6 "

----- gl $07 - ProcessDBD Servicel? Scheduling Rate [ms] |-“:":I
""" Lzl $08 - ProcessDBD Service0s -

----- Lzl $09 - Process0BD Service0d Scheduling Rate [ms] |1|:||:||:|

----- @ $04 - Procesz0BD S erviceld,
@ $10 - Diags eszionControl
@ $27 - Securitwhocess
@ $3E - TesterPrezent
@ $11 - EcuReset
@ $19 - ReadDtclnfo
@ $14 - ClearDiaglnfo
@ $85 - ControlDtcSetting
@ $22 - ReadDataByld
@ $2E -'winteD ataByld
@ $24 - ReadD ataByPeriodicld
@ $2C - DynamicallyDefinel atald
@ $31 - RoutineControl
----- @ $34 - ReguestDownload
----- @ $35 - ReguestUpload
----- @ $23 - ReadMemonBpAddress
----- @ $30 - wiiteM emomnBpdddress
----- @ $36 - TransferData
----- L2l $37 - RequestTransferE «it
----- L2 $BA -_BA_Supplier_Service
----- L)) $BE - _BB_Supplier_Service
----- g $BC-_BC_Supplier_Service —
----- L) $BD - _BD_Supplier_Service
----- L)) $BE - _BE_Supplier_Service
4% States

H-4p State Groups

%% Service State Overview
----- &) Timings
----- Yy Securty

..... bl o chiedLiler

Dy P ey O ey O e R o R e N sy O o R oy Y oy O oy O ey
(£ g g g £] e g ey 2 g R Ry Ry C gy B

-

Figure 6-14 GENy CANdesc scheduler parameters

Attribute Name Values

The default value is
written in bold

Availability

Description

Maximum Count of
Scheduled Items

The maximum number of items
that are sent periodically.

Only if the periodic Integer 5
data reading 1..255
service is available

in the ECU

configuration.

You can only request at most this
number of periodic DIDs,
independently per scheduling rate.

Example:

©2013, Vector Informatik GmbH Version: 3.07.00 40/ 164

based on template version 5.1.0

Technical Reference CANdesc vector

Attribute Name Availability Values Description

The default value is
written in bold

If set up 5 items for scheduling,

CANdesc will be able to schedule
at most 5 items at fast, 5 items at
slow and 5 items at medium rate.

Note: If the scheduler size exceeds
the total number of available
periodic DIDs, CANdesc will
automatically reduce the size to
the lowest value.

Fast/Medium/Slow Only if the periodic Integer = OEM Specifies the timings of each
Scheduling Rate data reading dependent scheduling rate that the ECU
[ms] service is available 1..65535 supports.
in the ECU
configuration.
©2013, Vector Informatik GmbH Version: 3.07.00 41/164

based on template version 5.1.0

Technical Reference CANdesc vector

7 CANdescBasic Configuration in GENy

As already stated in 6 CANdesc Configuration in GENy since version 6.00.00, the
CANdesc configuration in GENy has been changed. Both CANdesc and CANdescBasic
variants share the same GUI and settings representation in GENy. Due to the reduced
feature set in CANdescBasic, its GENy GUI provides you correspondingly a reduced
configuration option set, covering all of the CANdescBasic requirements.

7.1 Global CANdescBasic Settings

CANdescBasic shares the same global settings as the CANdesc variant (refer to chapter
6.2.1 Global CANdesc Settings).

- Info
CANdescBasic does not support any of the multi identity modes!

7.2 Service Specific Settings

In CANdescBasic, you don’t have any more an external diagnostic specification document
that shall be imported (like a CDD file). In your software delivery, there is already a
prepared diagnostic configuration template that fulfills the concrete OEM and its diagnostic
protocol requirements.

Info

In CANdescBasic versions, prior 6.00.00, it was possible to import information, out of a
CDD file, whether a service Id is supported or not-supported and any new sessions. In
CANdesc 6.00.00 and newer this feature is temporarily disabled, but you still can
manually configure these changes.

Since CANdescBasic provides only a Sid view over the diagnostic services, its service specific configuration is performed
primarily within the service overview grid in GENy (refer to chapter 0

Service Specific Settings

CANdescBasic also provides a built in support for some of the diagnostic services like
CANdesc, but its scope is reduced (due to lack of enough service definition information)
only to the most important for diagnostic communication services (e.g.
DiagnosticSessionControl, TesterPresent, etc.). You will recognize these services in GENy
as described in chapter 6.2.2.2 Predefined (implemented) Services in CANdesc.

©2013, Vector Informatik GmbH Version: 3.07.00 42 /164

Technical Reference CANdesc vector

7.3 Timing Settings

The configuration aspect of the CANdescBasic timings settings is the same as described
in 6.2.3 Timing Settings, with the difference, that here there is no CDD file but a predefined
template.

7.4 Diagnostic State Configuration

CANdescBasic has a built in support only for the diagnostic session states. All other states
like SecurityAccess and ECU specific service execution conditions shall be implemented
by the application.

The supplied CANdescBasic template already includes all mandatory session, specified by
the concrete OEM. If some additional sessions needed, you can add them in GENy as
shown below:

'E $14 - ClearDiaginfo # | Configurable Optionz | Sezsion |

$19 - ReadDtclnfa |: General Settings
$85 - ControlD T CSettings

$23 - ReadMemoryEpdddress
-wiriteMemonyEwaddress |— CANdesc
- RequestDownload CnTransition Function

- Requestlpload |— CANdescBasic

- TransferData . Aoldd User Session []
- RequestT ranzferE wit

- LinkContral

Megative Response Code

o
[
[]

CEEEEEEE

s
==
=l

—|-<¥ 5 States

+-<% 5 Service State Overview

—-<¥ % State Groups

=4 Seszion
& [efault

Frograrming
Extended
SafetySystermDiagnosticSess
ECUProgrammingtd ode
ExtendedDiagnostictode
|JzersStatel

l:;) Iimingls 3

Figure 7-1 CANdescBasic add a user session

©2013, Vector Informatik GmbH Version: 3.07.00 43 /164

Technical Reference CANdesc vector

Info
For any session added by you (user sessions), GENy automatically creates all session
transitions, required by the concrete diagnostic protocol (e.g. UDS, KWP2000).

Examples:

Service 0x10:
<AllExistingSessions>-><NewSsession>,
<NewSession>-><NewSession>

Service 0x20:
<NewSession>-><DefaultSession>

| Caution

- The allowed session Ids are protocol dependent. For example: on UDS you can not
specify user sessions with Ids greater than 0x7F. On KWP2000 any value is acceptable
for session Id.

The session |d must be a unique value among all sessions, supported by your ECU.

For the user defined session, you can any time change their name, session or completely
remove them:

L&) $14 - CleaDiaglnfo # | Configurable Options | U zerStatel |

$13 - ReadDtclnfo |- General Settings
$85 - ControlD TCS ettings

23 - ReadM emornByaddress
30 - wWhiteMemonyBudddress D 060
34 - RequesztDownload |— CANdescBasic

3
3
3
$35 - Request!Ipload Remove User Session |
3
3
§

Plarme |L|ser5 tatel” |

36 - TransferData
37 - RequestTransferE «it
a7 - LinkContral
—|-<¥ 5 States

+-4 5 Service State Overview

=% State Groups

=4 Seszion
& [efault

Frogramming
Extended
SafetpSystemDiagnoszticSess
ECUProgramminghd ode
Extendedmiagnostictode
UserStatel

&) Timings 3

Figure 7-2 CANdescBasic change user session name, id or completely delete user session

LI N N B B

©2013, Vector Informatik GmbH Version: 3.07.00 44 /164

Technical Reference CANdesc

vactor’

Once a user session has been added, you can configure for each service whether it shall
be supported or not in the new session. You can do this configuration either on the service
overview grid, or if there are some service that have sub-services, for each sub-service.
The pictures below show each of the service level configuration views.

{-} ECU: Boardl
= “' Components
+- E7 Djag_CanDesc_Connec
—|-- & Diag_CanDescBasic_U
= @' CAMdescE azic EELIF'rn:ngrammingMn:-de| Extendedliagnostichode | L zerStatel
=@ Service Table F10 -
+ % $10-Diagt 17 -
$20 - Stopl
+-(g] $3E - Teste Sl
Lz $11-ECcUF 18-
Lg) $27-5ecu [$20-
S iy =
-Enal
Lz $22 - Read -
L) $2F -wiite |24 -
L) $24-Read [$27 -
% $£2F - loCor 525 -
$2C - Dyna
L&) $24 - Reac iy
L&) $31 - Rout 24 -
Lz $14- Elearl B2 -
Figure 7-3 CANdescBasic session configuration at service overview
77 ECU: Boadl B [Confiqurable: Dptions | $3E - TesterPresent |
= H' Cornporents |- General Settings
+- L7 Diag_CanDesc_ConnectorCAaM Supported

—|--C% Diag_CanDescBasic_Uds

= @ CaMdescB azic
= @ Service Table
+ @ $10 - Diags essionCo
@ $20 - StopDiagnostic

Rﬂl
Lgy s
Lz 327
Lz 328
Lz $29
) $22
&) $2E
& 324
Len $2F

$3E - TesterPrezent
B Service Instance
[Z $00- Proces
- ECUR eszet

- Securitpbcoess
- CommonCaornml
- EnableCaormrmur
- ReadD ataByld
-wiiteDataBuld
- ReadScalingD:
- loControlByld

Subservice Type
|: Advanced Propetties

Support "Suppress Positive
|: Service Execution
[— Session
Default
Programiming
Extended
SafetySystemDiagnostics
ECLiPngrammingMDde
ExtendedDiagnosticMode
U=erStatel

Figure 7-4 CANdescBasic session configuration at service Id level

©2013, Vector Informatik GmbH

Version: 3.07.00

45/ 164

Technical Reference CANdesc vector

.} ECU: Boardl # | Configurable Optionz | $00 - ProcessT esterPresent |
=l Comporents |— General Settings
+-E2* Diag_CanDesc_ConnectorCaN - -
- -5 Execut
=) E2* Diag_CanDescBazic_Uds |- Service Exse IDI_-l
= @ CaMdescE asic Suppart Physical Reqguest
=@ Service Table Suppart Functional Reguest
T % $10 - DiagSessionC |- Service Responise
$20 - StopDiagnosti -
= rt Ph | R
= @ $3E - TesterPrezenl HRRe ':.:'su.:a esponse
= Service Instanc Support Functionsl
(2] $00 - Proce |- Service Execution
() $11-ECUReset |— Session
L&) $27 - Securityhcres
Default
L&) $28 - CommaonCarnr Sreu :
L&) $29 - EnableCommt Frogramming
@ $22 - ReadD ataBul Extended
% $2E - WwiiteD ataByl: SatetySystemDiagnostic
$24 - ReadScalingC pp— -
ECUP o
(& $2F - loCortralEyid rogrammnahiods
@ $2C - DynamicallyD ExtendedDiagnostichod
@ $24 - ReadDatabyf UserStatel

Figure 7-5 CANdescBasic session configuration at sub-service level

©2013, Vector Informatik GmbH Version: 3.07.00 46/ 164

Technical Reference CANdesc vector

8 Multi Identity Support

CANdesc allows you to use multiple diagnostic configuration sets — a use case where the
ECU always communicates over the same connection, but shall implement different
functionality depending on some hardware (jumper) setting.

All supported configuration sets are described in the following chapters.

Info
Please note:

The multi identity feature of CANdesc is:
- firstly supported in CANdesc 6.00.00;
- not supported at all in the CANdescBasic variant.

8.1 Single Identity Mode

CANdesc has a static configuration set — once all services and communication
connections are configured, and the program code is flashed into the ECU there are no
more configuration changes possible.

8.1.1.1 Configuration in CANdela

You need just to prepare the corresponding CDD variant for your ECU configuration in
CANdelaStudio.

8.1.1.2 Configuration in GENy

Import the CDD file and the corresponding variant in GENy (refer to chapter 6.2 Step Two
— ECU Diagnostic Configuration in GENy for details).

8.2 VSG Mode
The VSG mode is a special multi identity mode, which has the following characteristics:

= Allows to support multiple diagnostic configuration variants — each variant reflects a
VSG from the imported CDD file, and additionally there is a base variant that contains
all services that does not belong to any VSG.

= One or several configuration variants can be simultaneously activated during the ECU
initialization. The base variant is always active.

©2013, Vector Informatik GmbH Version: 3.07.00 47 /164

Technical Reference CANdesc vector

CANdesc
APPL
A
I
[
CANdesc .| CANdesc
| DIAG CFG
A
A 4
TP

Figure 8-1 CANdesc multi identity mode

CANdesc will be initialized with the base variant at ECU start up sequence. If required,
additional variant(s) can be activated by the application (please refer to chapter 12.6.2
Multi Variant Configuration Functions for more information about the variant initialization).

8.2.1 Implementation Limitations

In order to generate the correct NRC for a requested service Id (e.g. Ox7F
(ServiceNotSupprtedinActiveSession), CANdesc considers all of its sub-services
diagnostic session specific execution precondition and calculates a diagnostic session
filter for the SID. In case of a multi-identity such a calculation shall be made for all of the
diagnostic configuration variants, which will cost a lot of ROM resources.

In order to keep CANdesc ROM resources as low as possible the service Id specific
session filtering is created considering the superset of all sub-services it contains,
independently of their configuration affiliation. Depending on the active configuration set in
the ECU, this limitation can lead to the following effect:

A requested service will be responded with the NRC 0x12 (SubfunctionNotSupported) or
0x31(requestOutOfRange), depending on if it has a sub-function or not, instead of the
NRC 0x7F. Such a configuration could be for example:

Service 0x22 (ReadDataByldentifier) supports only two DIDs:
0xF100 - supported only in the default diagnostic sessions and available only in variant 1;
0xF101 — supported only in a non-default session and available only in variant 2.

CANdesc will summarize in this case, that service 0x22 is allowed in any diagnostic
session since there is at least one DID supported in at least one of each session.

Now let's assume the ECU is powered up with active variant 2. If the client sends a
request 0x22 0xF100 while in the default diagnostic session, CANdesc will respond with

©2013, Vector Informatik GmbH Version: 3.07.00 48 /164

Technical Reference CANdesc

vactor’

the NRC 0x31 (DID not supported), instead of the 0x7F (none of the DIDs in the active
configuration is executable in the default session -> the service Id itself is not executable in

the session -> NRC 0x7F would be expected).

8.2.2 Configuration in CANdela

= |f multiple diagnostic configuration sets shall be selectable in CANdesc, you will need a

CDD with several VSGs where each describes a diagnostic configuration set.

A

Caution

CANdesc supports the multiple diagnostic configurations only on service/sub-service
availability level. Therefore the following limitations must be considered while creating
the separate CDD files resp. CANdela variants for CANdesc:

m A service can be completely deactivated within a VSG;

m A sub-service (e.g. DID, sub-function, etc.) can be completely deactivated within a
VSG;
m If a service exist in multiple VSGs, then it must have exactly the same properties
- Execution pre-conditions (e.g. diagnostic session, security access, etc.)
- Support of SPRMIB
- Addressing mode (physical/function)
- Response behavior (response on physical/function request)
m If a sub-service exist in multiple VSGs, then it must have exactly the same
properties
- Execution pre-conditions (e.g. diagnostic session, security access, etc.),
resp. trigger of state transitions.
- Addressing mode (physical/function)
- Response behavior (response on physical/function request)
- Protocol information semantic (sub-function, identifier, etc.)

- Request resp. response content must be identical — same data
structure, data types, and constant value (if any available)

m Service 0x31 (RoutineControlByldentifier) specifics

- The multi-identity varying is allowed only on RID level. If a RID is
supported in multiple variants, then the sub-functions supported by this
RID must be the same (i.e. it is not allowed to have one variant with only
“start” sub-function and one with “start and stop” for the one and same
RID).

m Service Ox2F (loControlByldentifier) specifics

- The multi-identity varying is allowed only on DID level. If a DID is
supported in multiple variants, then the control options supported by this
DID must be the same (i.e. it is not allowed to have one variant with only
“ShortTermAdjustment” and one with “ShortTerm-Adjustment and
ReturnControlToEcu” for the one and same DID).

If at least one of the above requirements is not fulfilled, the variant that violates the rule
will not be imported.

©2013, Vector Informatik GmbH Version: 3.07.00

Technical Reference CANdesc vector

8.2.3 Configuration in CANdela
Please follow the steps below on how to configure VSG in CANdelaStudio.

1. Defining all available VSGs for the concrete ECU.

In CANdelaStudio, select the Vehichle System Groups view and add all necessary VSGs
into the VSG pool.

-4 ECU informetion Vehicle System Groups
@ DT Crwerview

@ Comrmon Disgnostics In this chiapter wou can create and edit vehicle system groups.
- Variarts
@ Chates To creste & new vehicle system group, click [Mew Group] st the lower left carner of this page

L__| @ = cortainer as well as DTCs and identifying patterns on the page of & wvehicle system group.

""" [F) Identifying Features You can find further information regarding vehicle system groups in the online help on page E

...... @ tel
..... @ YE 2 Crverwiew of the wehicle system groups of this document:
Lol WEGE Mamne Idertifying Patterm I Description

----- B Data Twpes

..... @ Protocol Services
Eg.-@ Megative Responses
EEI--@ import pol Pleaze click here to create a new element .

Figure 8-2 Defining VSGs in CANdelaStudio

The name of the created VSG will be used later by CANdesc for the diagnostic
configuration constants that the CANdesc application shall use during the configuration
activation phase (refer to chapter 12.6.2 Multi Variant Configuration Functions).

Once all of the required VSGs are created, you can start with the service to VSG
assignment.

2. Service to VSG assignment

Using CANdelaStudio you can assign any diagnostic instance to none, one or multiple
VSGs. Those services that do belong to a diagnostic instance without a VSG assignment
will be considered as services of the base variant (services that are always available).

©2013, Vector Informatik GmbH Version: 3.07.00 50/ 164

Technical Reference CANdesc

EI@ Cormmon Disgnostics

...... [21 1dertifying Features

El@ Supported Diagnostic Classes

; @ Seszionz

: ECL Reset - HardReset [PF]

=1 AEll Read Only Data Idertifiers

..... 0043 WSG1 [PF]

..... 0044 WSG2 [PF]

..... [B] 0000 Example: ReadOnlyDID [PF)
----- @ 0011 Example: Fead Only D10 0x1
..... FFO1 Did Oxff01, lewel B [FF]

..... 0006 Did 006, lewvel B [PF]

..... 0002 Did 0x02 [PF]

..... 0004, Did O [PF]

..... Bl 0012 Did 0x12 [PF]

..... 000C Did Oxc [PF]

- 4@ Readfnrite Dats ldentifiers
- & Write Only Data Idertifiers
- 10 Control

- 4@ Routine Cortrol

EEI"@ Security Access

----- Fault Memary [PF]

..... Control DTC Setting [P
. S Derindie Nata Iderstifier

1 |

Figure 8-3 Setting a VSG for service in CANdelaStudio

8.2.4 Configuration in GENy

[PF

I

vactor”

-l Diagnostic Instance (Read Only

Mane: IDid O=c

Description: |

FecordDatalD: Inxu I |

Serwice: Protocal
W Read: = 221k

DataRecard (zz) |

Bute ... I I Mame I Data Type

|:]III Comman Diagno... Common Diggnostics .
Pleas

..... o022 Fange Test Read Only Data lder lPruperties of Diagnostic Instance “Did Oxc™

Gereral | Sudierice | Suthorization (V'Ehide System Grﬂupﬂ]

@ Az=ociation with Wehicle System Groups

Mame I Identifying Pattern
O wsG
Ovacz
OvsGs

In order to put GENy into VSG mode, you have to select it on the CANdesc component
root. Please refer to the chapter 6.2.7 Global CANdesc Settings for details about the

variant selection option.

Now import the CDD file, containing the VSGs in GENy as described in chapter 6.7 Step
One — Importing an ECU Diagnostic Description. That is all.

8.3 Multi Identity Mode

Multi Identy Mode is not supported by CANdesc.

©2013, Vector Informatik GmbH

Version: 3.07.00 51/164

Technical Reference CANdesc vector

9 Diagnostic Service Implementation Specifics

9.1 ReadDataByldentifier (SID $22)

This service has the purpose to read some predefined data records (PID). Each PID has a
concrete data structure which is designed by CANdelaStudio.

As the standard case the request contains a single PID. This results in a single response
containing the data structure of the record.

Single PID mode (well know case) example for PID $1234
Tester's request:
$22|$12|$34

ECU's response:
$62|$12|$34|Data block

The UDS allows to request multiple PIDs in a single request. This results is also a single
response including the data structure of each requested PID.

Multiple PID mode example for PIDs: $1234, $ABCD

Tester's request:
$22|$12(34ABSCD

ECU's response:
$62|$12($34|Data block|$AB$CD, Data block

CANdesc will hide this multiple PID processing from the application. To do that some minor
limitations in the interface has to be made (see chapter 9.1.2 Single PID mode). To show
the differences, we discuss first the standard case. In the standard case there is no
multiple PID processing possible. The second chapter (9.1.3 Multiple PID mode) is

showing the multiple PID processing.
Which mode is used depends on the configuration (typically the OEM).

©2013, Vector Informatik GmbH Version: 3.07.00

52 /164

Technical Reference CANdesc vector

9.1.1 Limitations of the service
Session management

This service contains no sub-function identifier which means the global state group
“session” may not be selected as a “relevant group” for any instance of this service. If
there is a need for a PID to be rejected under a certain session, all PIDs must follow this
rule and be specified to be rejected for this session. As a result the whole SID $22 will be
rejected for this session. This behavior is harmonized with the UDS protocol specification,
which allows service identifiers to be rejected in a session but no parameter identifiers.

©2013, Vector Informatik GmbH Version: 3.07.00 53 /164

Technical Reference CANdesc vector

9.1.2 Single PID mode

The Single PID mode is configured automatically, if the number of PIDs that can be
requested at the same time, is limited to one PID. If more than one PID is requested, the
request will be rejected with ‘RequestOutOfRange’ (NRC $31).

If the multiple PID mode of CANdesc is deactivated, the service $22 will be executed and
processed like any other diagnostic service without any additional specifics or limitations.

9.1.2.1 Sending a positive response using linear buffer access

Tester CANdesc Application
Check all states if the
J SId[$22], Pid[$xxxX] J "read PID" senice can
StateGroupsCheck for Pid be executed.

=

ApplDescPreReadDataByld_xxxx |

check if the application rejected the senvice.

If available execute the pre-handler and ﬁ

ApplDescReadDataByld_xxxx

to fill the response data.

T 9 Write data (pMsgContext->resData)

]

Execute the main-handler ﬁ

Set total response data length
(pMsgContext->resDataLen = N)

(]

DescProcessingDone()

RSid[$62], PID[$xxxx], Data[N]

initiated after the DescProcessingDone
gets called.

The positive response transmission will be ?

Figure 9-1: Linearly written positive response on single PID request

©2013, Vector Informatik GmbH Version: 3.07.00 54 /164

Technical Reference CANdesc vector

9.1.2.2 Sending a positive response using ring buffer access

Check all states if the
SId[$22], Pid[$xxxx]

"read PID" senice may
StateGroupsCheck for Pid————— — | be executed.

ApplDescPreReadDataBylijxz(xx ___|the application rejected the senice.

If available execute the pre-handler and check if ﬁ

ApplDescReadDataByld_xxxx

———tofill the response data.

Execute the main-handler ﬁ

Set total response data length
L] (pMsgContext->resDatalLen = N)
DescRingBufferStart()
Write data (DescRingBufferWrite())
FF (RSid[$62], PID[$xxxx], Data[3]) L] — — - —
The positive response transmission will be initiated after
U the DescRingBufferStart gets called and there are at
Wiite data (DescRingBufferwiite() least 7 bytes ready to be transmitted (i.e. 3 data bytes).
CF(Data[N-3]) LI

Figure 9-2: “On the fly” response data writing.

©2013, Vector Informatik GmbH Version: 3.07.00 55/164

Technical Reference CANdesc vector

9.1.2.3 Sending a negative response

Due to the fact that the negative response handling has changed in the multiple PID mode,
we recommend to do the same handling in the Single PID mode, too. Please refer the
chapter 9.1.3.2 “Ring buffer active configuration” for the recommended negative response
handling.

—, 7 CANdesc Application
) Check all states if the
SId[$22], Pid[$xxxx] "read PID" senice can
StateGroupsCheck for Pid - be executed.
< If available execute the pre-handler and
heck if th licati j hi ice.
ApplDescPreReadDataByld_xxxx check if the application rejected the senice

Execute the main-handler
ApplDescReadDataByldﬁ_xrxxix7 . ltofill the response data.

= DescSetNegresponse(errorCode)

The main-handler still can
register any errors.

DescProcessingDone()

)

Sid[$7F], Sid[$22], ErrorCode[errorCodg]

[]

initiated after the DescProcessingDone

The negative response transmission will be
gets called.

Figure 9-3: Negative response on single PID

9.1.3 Multiple PID mode

The Multiple PID mode is configured automatically if the number of PIDs, that can be
requested at the same time, is greater than one. If more than this predetermined number
of PIDs is requested, the request will be rejected with ‘RequestOutOfRange’ (NRC $31).

In this configuration some minor limitations must be taken into account while using the
CANdesc interfaces.

For the service “ReadDataByldentifier” the ring-buffer feature can be used. Depending on
the usage of this feature, there are two main use cases for the multiple PID mode.:

©2013, Vector Informatik GmbH Version: 3.07.00 56 / 164

Technical Reference CANdesc vector

9.1.3.1 Pure linear buffer configuration
The ring-buffer feature is deactivated in general.

If the system doesn’t use any ring buffer access for filling the response, the PID pipeline is
still quite simple and therefore with less limitations to the CANdesc APl usage and
application performance.

9.1.3.1.1 Sending a positive response

CANdesc Application

J SId[$22], PidO[$xxxx], Pid1[$yyyy]

Before the requested PIDs will be processed, check

StateGroupsCheck for PIDO[$xxxx] all PIDs":
1. States (may be executed)

< ,7 2. Pre-handlers.
ApplDescPreReadDataBy!d_xxxx T

StateGroupsCheck for PID1[$yyyy] u
ApplDescPreReadDataByld_yyyy

[]

ApplDescReadDataByld_xxxx

main-handler to fill the response

S _ |Execute the first PID's T

data.
Write data (pMsgContext->resData)

Set total response data length

(pMsgContext->resDatalLen = N)
U Once the senice execution of

L the current PID has been
. _|accomplished...
DescProcesynngr)e(),,,
U ...execute the next
__|queued one.

AppIDescReadDataByrld _yyyy—

Write data (pMsgContext->resData)

]

Set total response data length
(pMsgContext->resDatalLen = M)

DescProcessingDone()

FF (RSid[$62], PIDO[$xxxx], Data[3])

CF[i](Data[N-3], PID1[$yyyy] Data[M)

initiated after all PIDs have called

The positive response transmission will be
DescProcessingDone and all the data ...

Figure 9-4: Linearly written positive response on multiple PIDs (global ring buffer option is off)

©2013, Vector Informatik GmbH Version: 3.07.00 57 /164

Technical Reference CANdesc vector

9.1.3.1.2 Sending a negative response

This example depicts the case where from two requested PIDs the first one may not be
accessible and rejects the service execution.

CANdesc Application

J SId[$22], Pido[$xxxx], Pid1[$yyyy] { Befor'e requested PIDs will be processed check all
StateGroupsCheck for PIDO[$xxxx] PIDs"
1. States (may be executed)
< 2. Pre-handlers.
ApplDescPreReadDataByld_xxxx T

StateGroupsCheck for PID1[$yyyy] U

= 1
ApplDescPreReadDataByld_yyyy

ApplDescReadDataByld_xxxx
- 1 _ [Execute the first PID's AN
main-handler to fill the response
data.
DescSetNegResponse(errorCode)
Once the senice execution of
7 the current PID has been
DescProcessingDone() accomplishec
— Skip further processing
of the list
RSid[$7F], Sid[$22], ErrorCode[errorCode]
. The second PID's
U Main-handler will not be
executed.
...stops the further
processing a...

Figure 9-5: Negative response on multiple PIDs (global ring buffer option is off)

9.1.3.2 Ring buffer active configuration

Attention: The Ring-Buffer in ‘Multiple PID‘ services can be first-time used since CANdesc
version 2.13.00

Different concepts for the buffer handling were discussed while development. Two
solutions with different pros and cons are discussed here:

e Multiple buffer

Normally each service handler (MainHandler routine) has the whole diagnostic buffer
available (apart from the protocol header bytes hidden by CANdesc). Based on this logic
the service $22 using PID pipelining has the same tasks as the normal service processor:
executing a PID handler and provide him the whole diagnostic buffer for response data.
This will hide the whole process and makes the application’s life easier (no exceptions for
the implementation). To realize this concept means to provide a separate diagnostic buffer
for each PID which size is the same as the main one (configured by GENtool). This is a
fast and quite simple solution but requires too much RAM to be reserved for only the case
that sometimes the testers would like to use the maximum capacity of the ECU (i.e.
requests as many PIDs as possible for this ECU in a single request).

Pros: less ROM usage

©2013, Vector Informatik GmbH Version: 3.07.00 58 /164

Technical Reference CANdesc vector

Cons: very high RAM usage

e virtual multiple buffer

This concept is more generically designed and will not have additional ROM overhead if
the pipeline size will be increased. An intelligent buffer concept gives the application the
whole size of the buffer for each MainHandler call.

Once the whole data for the current PID has been written, the data supplement will stop
(because the next PID handler will not be called). The transmission in the transport layer is
started and some time later it runs into buffer under-run. This ‘signal’ is used to call the
next PID MainHandler. This MainHandler has to provide his data very quick. Otherwise the
response transmission will stop (due to a continuously buffer under-run).

Pros: less RAM usage (practically independent of the maximum list size).

Cons: moderate ROM overhead / the response data must be composed very
quickly.

The virtual multiple buffer concept is the implemented solution. The application can choose
for each PID separately to write the data linearly or by using the ring buffer.

performance requirements
The application has performance requirements:

- If linear access has been chosen, the whole response data of each MainHandler
must be filled within the lower duration of the P2 time and the TP confirmation
timeout. Normally the P2 time is shorter than the transport layers confirmation
timeout so just take into account that each Main-Handler must be able to fill its
response data within a time far shorter than the P2 time.

- If ring buffer access has been chosen, the application has to call the
“‘DescRingBufferWrite” fast enough to keep TP from confirmation timeout.

Negative response on PID

The negative response handling is changed in the multiple PID mode! This affects all
protocol-services with a activated ‘May be combined’ property. The UDS specification
encloses only the SIDs: $22 and $2A. For all other services the negative response
handling is not changed!

If the application has to reject a request (e.g. ignition key check) it has to do that in the
PreHandler. The application is not allowed to call “DescSetNegResponse()” to send a
negative response in any MainHandler.

This limitation is based on the concept to check all reject conditions in PreHandlers before
starting the transmission. This is necessary because after CANdesc has executed the first
MainHandler (which starts the positive response transmission) there will be no chance to
send a negative response.

The usage of the concept: CANdesc starts to call all PreHandlers of this multiple PID
request. If no negative response is set, CANdesc will start to call the corresponding
MainHandlers. Within the first call of DescProcessingDone() the transmission is initiated.

Note (for version 3.02.00 of CANdesc and above):

©2013, Vector Informatik GmbH Version: 3.07.00 59 /164

Technical Reference CANdesc

vactor”

In case the application sets an error code during the main-handler execution in non-debug
(released) version of the component, depending on the situation will lead to:

For service $22:

First DID of the list main-handler: sending a negative response to service $22;

Second or any of the succeeding DIDs in the list: transmission interruption.

For service $2A:

9.1.3.21

Ignoring the scheduled response.

Sld[$22],PidO[$xxxx], Pid1[$yyyy]

Sending a positive response

CANdesc

{ StateGroupsCheck for PIDO[$xxxx]

P=—
ApplDescPreReadDataByld_yyyy

ApplDescReadDataByld_xxxx

Write data (pMsgContext->resData)

[]

|

Set total response data length
(pMsgContext->resDatalLen = N)

DescProcessingDone()

FF (RSid[$62], PIDO[$xxxx], Data[3])

CFIil(Data[N-3])

CF[j](Data[N-k],PID1[$yyyy]Data[m])

ApplDescReadDataByld_yyyy

Write data (pMsgContext->resData)

|

CF[l](Data[M-m])

Set total response data length
(pMsgContext->resDataLen = M)

DescProcessingDone()

©2013, Vector Informatik GmbH

Application

ApplDescPreReadDataByldﬁxxxx,,, _

StateGroupsCheck for PID1[$yyyy] U

[]

1]

Before requested PIDs will be processed check all

PIDs"

{1. States (may be executed)

2. Pre-handlers.

main-handler to fill the response

Execute the first PID's
data.

With the first called

.| DescProcessingDone() starts

the response transmission.

Once the whole data of the current PID has
been sent the next PID main-handler will be

called to supply the response data.

)

Version: 3.07.00

60/ 164

Technical Reference CANdesc

Figure 9-6: Linearly written response data on multiple PIDs (global ring buffer option is on)

9.1.3.2.2 Sending a negative response

Tester CANdesc Application

J Sld[$22], PidO[$xxxx], Pid1[$yyyy]

RSid[$7F], Sid[$22], ErrorCode[errorCode]

StateGroupsCheck for PIDO[$xxxx] PIDs"
P — 1. States (may be executed)
ApplDescPreReadDataByld_xxxx_ 2. Pre-handlers.

Before requested PIDs will be processed check all

StateGroupsCheck for PID1[$yyyy] U

= —

ApplDescPreReadDataByld_yyyy

DescSetNegResponse(errorCode)

L If error has been set - no
main-hadnler processing will
follow.

T

Send immediately
negative response.

Figure 9-7: Negative response on multiple PIDs (global ring buffer option is on)

©2013, Vector Informatik GmbH

Version: 3.07.00

vactor”

61/164

Technical Reference CANdesc vector

9.1.3.2.3 PostHandler execution rule

All PostHandlers are executed after the finished response transmission (like a normal
PostHandler).

Independent of the ring-buffer option setting (enabled or disabled), the execution of the
service $22 PostHandler(s) has the following rule which has to be taken into account:
calling the Post-Handler of a specific PID means: either the PreHandler of this PID
has been previously called or its MainHandler.

The following sequence chart depicts this:

CANdesc Application

J SId[$22],Pid0[$xxxx],Pid1[$yyyy],

i Before requested PIDs will be processted check all
Pid2[$zz22] StateGroupsCheck for PIDO[$xxxX] PIDs" % B
I — —|1. States (may be executed)
ApplDescPreReadDataByld_xxxx | |2 Pre-handlers.
PIDO, PID1and PID2 have all ﬁ) gl
ost-handlers configured.
P 9 StateGroupsCheck for PID1[$yyyy] PIDL has no pre-handler

<] ~—| cofigured. ﬁ

StateGroupsCheck for PID2[$zzzz]

b —

ApplDescPreReadDataByld_zzzz

DescSetNegResponse(errorCode)

main-hadnler processing will
L follow.

If error has been set - no T

o

% RSid[$7F], Sid[$22], ErrorCode[errorCode]
]

Send immediately
negative response.

-

ApplDescPostReadDataByld_xxxx

. U PID1 has a post-handler but since
~|the application doesn't know about
its reception - no post-handler will

ApplDescPostReadDataByld_zzzz be called.

[

Figure 9-8: Post-Handler execution sequence.

9.2 DynamicallyDefineDataldentifier (SID $2C) (UDS)

The DynamicallyDefineDataldentifier service allows the client (tester) to dynamically define
in a server (ECU) a data identifier that can be read via the ReadDataByldentifier service at
a later time.

The intention of this service is to provide the client with the ability to group one or more
data elements into a data superset that can be requested en masse via the

©2013, Vector Informatik GmbH Version: 3.07.00 62 /164

Technical Reference CANdesc vector

ReadDataByldentifier or ReadDataByPeriodicldentifier service. The data elements to be
grouped together can either be referenced by:

e a source data identifier, a position and size or,
e a memory address and a memory length, or,

e a combination of the two methods listed above using multiple requests to define the
single data element. The dynamically defined dataldentifier will then contain a
concatenation of the data parameter definitions.

The definition of the dynamically defined data identifier can either be done via a single
request message or via multiple request messages. This allows for the definition of a
single data element referencing source identifier(s) and memory addresses. The server
has to concatenate the definitions for the single data element. A redefinition of a
dynamically defined data identifier can be achieved by clearing the current definition and
start over with the new definition.

At last the dynamically defined data identifier consists of a list of (non-dynamically) defined
data identifiers and memory area ranges that can be used in any combination.

For more information, see /ISO 14229-1/

9.2.1 Feature set
These are the supported subfunctions for service $2C (DynamicallyDefineDataldentifier):

Subfunction Name Hex Value
defineByldentifier 01
defineByMemoryAddress 02
clearDynamicallyDefinedDataldentifier 03

9.2.2 API Functions

The reception of a Service $2C request will either delete a DynamicDataldentifier (DDID)
or PeriodicDataldentifier (PDID) by subfunction $03 or build a DDID/PDID by (several
times) using subfunction $01 and/or $02.

For subfunction $02 (defineByMemoryAddress) there is a new application callback
function (see chapter 12.6.13 “DynamicallyDefineDataldentifier ($2C) (UDS) functions”). It
allows the application to permit or deny the extension of the DDID/PDID by accessing the
defined memory range. The callback function must check, if the requested memory area is
readable for the external Tester and if the current security state of the ECU permits the
extension of the DDID/PDID. See chapter 12.6.13.2 for the full set of checks to be
executed.

Please note that later, when reading the DDID by using service $22
(ReadDataByldentifier), further (security) checks for each element of the DDID’s list are
executed to verify that e.g. the (then active) security state permits the reading of the
memory area or DID. These checks (of Service $22 and $23) are done in the traditional
sequence of Pre-, Main- and PostHandler.

©2013, Vector Informatik GmbH Version: 3.07.00 63 /164

Technical Reference CANdesc vector

The reception of a Service $22 request starts a new context in CANdesc. Typically the
requested data can not be asked from the application by using one single callback function
but must be constructed sequentially by collecting data for each part of the DDID’s
definition list:

e A requested basic source data identifier (DID) is asked of the application by the
respective callback (as for Service $22 request), the result data is stripped down to
the defined position and size

e A memory address is read by its defined function (typically the same as used for a
Service $23 request) and the defined ‘size’ bytes are collected.

As recommended from /ISO 14229-1/ to prevent data consistency problems a recursive
definition of DDIDs is NOT supported.

The Service $22 response data is collected by splitting the service request into these basic
tasks, then running the well known internal functions that were defined for them, collect
their results and build up the Service $22 response. Therefore, each of the above tasks
starts a new context, executes the defined Pre-, Main- and Post-Handler where
Application-Callbacks get data, delivers its result and finally ends its context.

The recursive evaluation of DDIDs enforces the usage of MultiContext mode.

We would like to point out that the described operating sequence above is completely run
within CANdesc and totally transparent for the application except for the additional API
callback function. Using Service $2C or $2A switches CANdesc to MultiContext mode — if
your application isn’t prepared to support MultiContext mode (by using the defined macros)
you’ll get compiler errors about inconsistent argument lists.

9.2.3 Sequence Charts
Service $2C - Define a DDID

The following picture exemplifies the sequence of defining a DDID by several call of
Service DynamicallyDefineDataldentifier ($2C).

In our example the first Service $2C request defines the DDID $F300 to return two
independent memory areas. For both areas the callback function
ApplDescCheckDynDidMemoryArea() is triggered and in this example the application
permits both accesses.

The consecutive Service $2C request extends the DDID $F300 by (some fragments of) the
existing DID $F010. As the here executed PreHandler does not set a Negative Response
Code, CANdesc considers the extension of the DDID valid and enlarges the DDID
definition.

A third Service $2C request tries to extend the DDID $F300 once more by another memory
area. In our example the call fails, as the specified memory area ($0000) is not valid for
this ECU. The service is negative responded and the previous DDID specification is left
untouched.

©2013, Vector Informatik GmbH Version: 3.07.00 64 /164

Technical Reference CANdesc

vactor”

sd Define a new DDID via Service $2C request /

Define DDID $F300 as

CANdesc

[

$2C 02 F300 12 ABCD04 FEDC05 >

4-byte memory block at
address $ABCD and
5-byte block at SFEDC

D

check for

Application

ApplDescCheckDynDidMemoryArea

Addr. $ABCD,
Size $04

LN

check for

memBlockOk

< ____________________________

ApplDescCheckDynDidMemoryArea

Addr. $FEDC,
Size $05

PosResponse ($6C 02)

$2C 01 F300 FO10 ...

Extend the DDID $F300
by using
existing DID $F010

4
R

memBlockOk

< ____________________________

No Neg. RCode
set --> success

PosResponse ($6C 01)

$2C 02 F300 12 000004

S

Further extention fails
due invalid address
value ($0000) in
request

ApplDescCheckDynDidMemoryArea

check for Addr.
$0000 fails!

NegResponse ($7F 2C 31)

memBlockinvAddress

< ____________________________

©2013, Vector Informatik GmbH

Figure 9-9: Defining a DDID.

Version: 3.07.00

65/ 164

Technical Reference CANdesc vector

Service $22 — Read a DDID

The above defined DDID is now read by Service ReadDataByldentifier ($22). Within
CANdesc the DDID is disassembled into its elements: One (virtual) request for the first

memory range, another request for the second memory range and finally a request for the
predefined DID $F010.

sd Read defined DDID via Service $22 request/

Tester CANdesc Application
Read DDID $F300 that : $22 F300 -
was defined as:
Addr ABCD, Size 04
+ Addr FEDC, Size 05 $28 12 ABCDO4
+ DID FOlO, Pos . Size .. execute virtual
$23 request PreHandler
MainHandler I E]
PostHandler I]
$23 12 FEDCO05 :
execute virtual : :
$23 request PreHandler !
MainHandler]
PostHandler ’DIE]
I\ | | s22 Foto
execute virtual .
$22 request ... :l PreHandler :
MainHandler D,
PostHandler]
... and cut out the r E]
required bytes :
from the result

concatenate
the results

PosResponse ($62)

¢

Figure 9-10: Reading a DDID.

Between CANdesc and the application the sequence looks same as if the tester would
have sent 3 requests: (1) ReadMemoryByAddress ($23) on first address range, (2)
ReadMemoryByAddress ($23) on second address range, and finally (3)
ReadDataByldentifier ($22) on the DID $F010. Keep in mind: this is just a picture for the
succession of events/API-calls - these requests are not real, the messages are never seen
on the bus, the internal sequence is actually slightly different but for the application it looks
the same!

©2013, Vector Informatik GmbH Version: 3.07.00 66 /164

Technical Reference CANdesc vector

9.3 Read/Write Memory by Address (SID $23/$3D) (UDS)

Caution
&& This chapter does not apply to all ECU configurations. Only in special cases the
memory access support will be available!

The services $23 (ReadMemoryByAddress) and $3D (WriteMemoryByAddress) are
handled uniformly in CANdesc.

Basically the memory by address requests look like this:

$23 | FID address length

$3D | FID address length data

The application need not concern itself with the details how the address and length are
formatted. If a valid FID is recognized, CANdesc will extract the address and length
information from the request and call an appropriate application callback.

See also:
ApplDescReadMemoryByAddress (12.6.14.1)
ApplDescWriteMemoryByAddress (12.6.14.2)

9.3.1 Tasks performed by CANdesc
To a certain degree CANdesc validates the request.

The basic format checks and service level state validation — this means e.g. security and
session validation — are performed before calling the application callback.

Service level state validation means that the request will be denied if all diagnostic
instances of service $23 or $3D are not allowed in the current state.

In case of WriteMemoryByAddress the application has linear access to the whole data
block to write.

9.3.2 Task to be performed by the Application

CANdesc currently does not provide state validation on format identifier level or memory
address / memory block level.

This means, that for example different memory addresses shall require different security
levels, the application will have to verify that the ECU currently is in an appropriate state to
access the requested memory area.

9.3.3 Repeated service calls
The repeated service call feature is available for the memory access callbacks.

Because they have a different prototype than a normal main handler, the usual API
‘DescStartRepeatedServiceCall (see 12.6.8.1) can not be used with the memory access
callbacks.

©2013, Vector Informatik GmbH Version: 3.07.00 67 /164

Technical Reference CANdesc vector

Instead, a new API call ‘DescStartMemByAddrRepeatedCall (see 12.6.8.2)' has been
added.

To abort the repeated service call, use the usual API.

©2013, Vector Informatik GmbH Version: 3.07.00 68 /164

Technical Reference CANdesc vector

10 Generic Processing Notifications

If CANdesc UDS2012 is used, the feature “Generic Processing Notifications” is provided.
Upon activating this feature, CANdesc will notify the application when the processing of a
request starts and ends. Thereby, the notification mechanism is two-staged. On each
stage there are two application callbacks, one indication and one confirmation callback.
On the first stage “Manufacturer Notification Support”’, CANdesc will notify the application
right before the processing of a fully received request starts, by calling the function
ApplDescManufacturerindication(). When the processing of the request has been finished,
the response has been sent and all PostHandlers were called, CANdesc notifies the
application again by calling the function App/DescManufacturerConfirmation().

The application callbacks of the second stage “Supplier Notification Support” are named
accordingly ApplDescSupplierindication() and ApplDescSupplierConfirmation(). The
indication callback is called by CANdesc after it has verified that the requested service is
supported in the active session, security state and user states. The confirmation callback
is also called after the response has been sent, and all PostHandlers were called, but right
before the call to App/DescManufacturerConfirmation(). Thus, the manufacturer and
supplier callbacks are called in a nested way. Figure 3-1 illustrates the order of the
notification callbacks related to the processing of a service request.

Application
f Prehandler :
! Manufacturer | | Mainhandler | ! supplier
Indication] Confirmation

E Supplier f ------------------ E Manufacturer f

i Indication i Confirmation |
| S | | S |
CANdesc
Check SID Check Format
_ [e [1 111 11| R
| | 1 L
Check Session/Security t
REqueSt ———— positive Response
——— negative Response
Tester

Figure 10-1 Call order of Manufacturer- and Supplier-Notficiation

©2013, Vector Informatik GmbH Version: 3.07.00 69 /164

Technical Reference CANdesc vector

10.1 Using dynamically defined data Identifier

The Service DynamicallyDefineDataldentifier allows the definition of data identifiers with
other data identifiers or memory areas. These DDIDs can be read via service
ReadDataByldentifier. When reading a DDID, for each source element a virtual request is
processed by CANdesc to get the information for this source element from the
application(see chapter 9.2). Because CANdesc processes the virtual requests equal to
normal requests, the notification functions will not only be called for the $22 request
containing the DDID, but also for each virtual request. The application has to consider
these additional calls, in case a DDID is requested.

Figure 10-2 shows an example of reading a DDID with service $22.

sd Read defined DDID via Service $22 request with Generic Processing Notifications/

Tester CANdesc Application

Read DDID $F300 that ! $22 F3000 >
was defined as:

Addr ABCD, Size 04 Manufacturer Indication()

+ Addr FEDC, Size 05 ' —
+ DID FO10, Pos .., Size .. SEEIE Vel Supplier Indication()
$23 request

$23 12 ABCD04()

Confirmation calls
for the request to
read the DDID

Manufacturer Indication()

Nested confirmation
calls for the virtual

Supplier Indication()

request

PreHandler()
MainHandler()
PostHandler()

Supplier Confirmation()

Manufacturer Confirmation

Process further
virtual requests

[]4 PosResponse ($62)

PostHandler()

. S #. 0. /2 O F: SN, I A—_—

Supplier Confirmation()

Manufacturer Confirmation(),

—dd

Figure 10-2 Read out a DDID with generic processing notifications

©2013, Vector Informatik GmbH Version: 3.07.00 70 /164

Technical Reference CANdesc vector

11 Busy Repeat Responder Support (UDS2006 and UDS2012)

Busy Repeat Responder is a feature, that allowes CANdesc to respond to incoming
requests during the processing of another request. Such parallel requests are properly
received and in the next task cycle of CANdesc responded negatively with NRC
BusyRepeatRequest (0x21).

Figure 11-1 illustrates the functionality of the Busy Repeat Responder mechanism. During
the processing of Request 1, Requests 2 and 3 from Tester 2 are responded negatively
with NRC BusyRepeatRequest. After the processing of request 1 has finished and a
positive response has been sent, Request 4 from Tester 2 can be processed properly.

sd BusyRepeatResponder/

Tester 1 Tester 2 CANdesc
I] I
I I I D
| | Request 1() I CANdesc hasreceived a
: EI] request from Tester 1 and
I I starts the processing
| Request 2 |
q 0 >
| _ _ NegResponse Busy() _ _ | AN
Parallel requests from
N N another tester are responded
| Request 3() >_| negatively with NRC
BusyRepeatRequest
Neg Response Bu
—_ _ Neg Response Busy() _ _ |
T s
! |
Pos Response for Request 1
e - — — — 27T gponse for ke quest1Q _ _ _ _ _ _ —[,IJ
|
|

After CANdesc hasfinished

l Request 4() l the processing of the request
from Tester 1, Requests from
_ _PosResponse for Request 40_ rain, 2 canbe proces=d

Figure 11-1 lllustration of the feature BusyRepeatResponder

Preconditions that must be fulfilled when using the feature Busy Repeat Responder:

> The TP must be a ISO TP from Vector with TP Class “Dynamic Normal Addressing
Multi TP” or “Dynamic Normal Fixed Addressing Multi TP”

> In the TP configuration the feature “Extended API — Overrun Reception” must be active
> |In the TP configuration the number of Rx channels and Tx Channels must be > 1

> |In case of Dynamic Normal Addressing Multi TP, a dispatcher needs to be
implemented in the application (for a detailed description see chapter 13.712)

©2013, Vector Informatik GmbH Version: 3.07.00 71/164

Technical Reference CANdesc vector

Restrictions when using the feature Busy Repeat Responder:

> Only physical parallel requests are responded negatively. Functional parallel requests
will NOT get a negative response.

11.1 Configuration in GENy

To activate the feature Busy Repeat Responder use the setting in the CANdesc
component root (refer to chapter 6.2.7 Global CANdesc Settings).

Furthermore, the feature requires additional configuration in the TP component. The
feature “Extended API — Overrun Reception” must be enabled. This setting is available in
the group “Advanced Configuration”. To be able to receive another request while one is
under processing, the “Number of Rx Channels” and “Number of Tx Channels” must be at
least two. The number of channels can be configured in the TP Connection Groups:

|: TP Connection Group

Hame Diag
Mumber of Rx Channels 2
Mumber of Tx Channels 2

Figure 11-2 Example of the “Number of Rx(Tx) Channels” settings

In case of “Dynamic Normal Addressing Multi TP” a dispatcher needs to be implemented in
the application. The description of the GENy configuration to integrate the dispatcher is
described in chapter 13.12 ...use “Dynamic Normal Addressing Multi TP” with multiple
tester.

©2013, Vector Informatik GmbH Version: 3.07.00 721164

Technical Reference CANdesc vector

12 CANdesc API

12.1 API Categories

12.1.1 Single Context

This API category is used if no parallel processing is necessary. This is typical for the ISO
14229 specification.

12.1.2 Multiple Context (only CANdesc)

This API category is used if parallel processing is necessary. This means not that
CANdesc can work with multiple instances, but only one functional request can be
processed parallel to a working physical request.

12.2 Data Types
The following standard data types are used in this document:

vuint8 Represents 8 bit unsigned integer value.
vsint8 Represents 8 bit signed integer value.
vuint16 Represents 16 bit unsigned integer value.
vsint16 Represents 16 bit signed integer value.
vuint32 Represents 32 bit unsigned integer value.
vsint32 Represents 32 bit signed integer value.

Table 12-1: standard data types

Additional data types used in this document are described in the corresponding function
description.

12.3 Global Variables

12.4 Constants

12.4.1 Component Version

The version of the CANdesc component consist of 3 parts in the following format:
MM.SS.BB,

Where:
m MM is the main version of the component,

m SS is the subversion of the component,
= BB is the bug-fix version of the component.

To get the current CANdesc version, the application could use the following shared data:

©2013, Vector Informatik GmbH Version: 3.07.00 731164

Technical Reference CANdesc vector

g_descMainVersion BCD Contains the main version part.
g_descSubVersion BCD Contains the subversion part.
g_descBugFixVersion BCD Contains the bug-fix version part.

Table 12-2: Version API data

Note: The version of the module is the same as the version of the generator’s DLL file.

12.5 Macros

12.5.1 Data exchange

The CANdesc provides a generic API for splitting a multi-byte (up to 4 bytes) variable to a
byte sequence with platform transparent access to each byte, and assembling a multi-byte
(up to 4 bytes) variable from a sequence of bytes.

12.5.1.1 Splitting 16 bit data

The following function could be used to get platform independent access to the
corresponding bytes of 16 bit data variable:

vuint8 DescGetHiByte(16BitData)

vuint8 DescGetLoByte(16BitData)

12.5.1.2 Splitting 32 bit data

The following function could be used to get platform independent access to the
corresponding bytes of 32 bit data variable:

vuint8 DescGetHiHiByte(32BitData)

vuint8 DescGetHiLoByte(32BitData)

vuint8 DescGetLoHiByte(32BitData)

vuint8 DescGetLolLoByte(32BitData)

12.5.1.3 Assembling 16 bit data
The application can create the 16 bit signal from a byte stream using the following API:

uint16 DescMake16Bit(hiByte, loByte)
where the hiByte, loByte are the corresponding bytes for the returned 16 bit data.

©2013, Vector Informatik GmbH Version: 3.07.00 741164

Technical Reference CANdesc vector

12.5.1.4 Assembling 32 bit data
The application can create the 32 bit signal from a byte stream using the following API:
uint32 DescMake32Bit(HiHiByte, HiLoByte, LoHiByte, LoLoByte)

where the HiHiByte, HiLoByte, LoHiByte, LoLoByte are the corresponding bytes for the
returned 32 bit dat

12.6 Functions
12.6.1 Administrative Functions
12.6.1.1 DesclnitPowerOn()

DesclnitPowerOn

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype
Single Context

void DescInitPowerOn (DescInitParam initParameter)

Multi Context

void DescInitPowerOn (DescInitParam initParameter)

Parameter

initParameter Manufacturer specific type, please refer ‘CANdesc: OEM
specifics’ document

Return code

Functional Description

PowerOn Initialization of the CANdesc.
This function has to be called once before all other functions of CANdesc after PowerOn.

Pre-conditions

Correctly initialized CAN-driver via CanlnitPowerOn() and TransportLayer via
TpinitPowerOn().

Call context

Background-loop level with global disabled interrupts

Particularities and Limitations

m DesclnitPowerOn (initParameter) must be called after TplnitPowerOn() was called
(please, refer the /TPMC/ documentation), otherwise the reserved diagnostic
connection will be los

©2013, Vector Informatik GmbH Version: 3.07.00 75/ 164

based on template version 5.1.0

Technical Reference CANdesc

12.6.1.2 Desclnit()

Desclnit

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescInit (DescInitParam initParameter)

Multi Context

void DescInit (DescInitParam initParameter)

Parameter

initParameter Manufacturer specific type, please refer ‘CANdesc Part IV:
OEM specifics’ document

Return code

Functional Description

Re-initialization of CANdesc.

This function can be called to re-initialize CANdesc (e.g. after WakeUp). All internal states
will be set to default, except the states in this initParameter (e.g. Session or
CommunicationControl).

Pre-conditions
CANdesc was once initialized via DesclnitPowerOn ()

Call context
Background-loop level with global disabled

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

76 /164

Technical Reference CANdesc

12.6.1.3 DescTask()

DescTask

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescTask (void)
Multi Context

void DescTask (void)

Parameter

Return code

Functional Description

The function DescTask() has to be called periodically (cycle time Tpescaicyee) By the
application.

Within the context of this function the interaction with the application is performed. In
addition the monitoring of the timings is done, therefore the accuracy of the timings
depends on the call cycle and on the accuracy of the calls.

Pre-conditions

Call context

Background-loop level or OSEK-OS Task. The task should have a lower or equal priority
than all other interaction to the CANdesc component.

Particularities and Limitations

= May not be called if the DescStateTask() and DescTimerTask() are called.
|

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

771164

Technical Reference CANdesc

12.6.1.4 DescStateTask()

DescStateTask

Available since 4.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescStateTask (void)
Multi Context

void DescStateTask (void)

Parameter

Return code

Functional Description

Motivation: Using a single task function for timers and processing leads either to slow
processing or to faster timers which costs runtime for the ECU. The timers need very
stable cyclical call but the processing tasks may be done “as soon as possible” (i.e. using
OSEK to be assigned to lower priority task).

The function DescStateTask() has to be called periodically by the application. It is not a
timer task — it has no specific time period. As smaller this tasks call period is, so faster will
be the service processing.

This task function will process received request and to control the transmission of the
responses. Depending on the ECU requirements it is recommended to call this task as
soon as possible to avoid delays of the response (e.g. dynamically defined DID,
scheduled data, etc.), but take into account that within this task the corresponding
MainHandler will be executed too.

Pre-conditions

Call context

Background-loop level or OSEK-OS Task. The Task should have a lower or equal priority
than all other interaction to the CANdesc component.

Particularities and Limitations

= May not be called if the DescTask() is used (reentrancy is forbidden).
|

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

78 /164

Technical Reference CANdesc

12.6.1.5 DescTimerTask()

DescTimerTask

Available since 4.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescTimerTask (void)
Multi Context

void DescTimerTask (void)

Parameter

Return code

Functional Description

Motivation: Using a single task function for timers and processing leads either to slow
processing or to faster timers which costs runtime for the ECU. The timers need very
stable cyclical call but the processing tasks may be done “as soon as possible” (i.e. using
OSEK to be assigned to lower priority task).

The function DescTimerTask() has to be called periodically by the application in the
configured task period. It can be called as slow as possible to free run time resources.

Pre-conditions

Call context

Background-loop level or OSEK-OS Task. The Task should have a lower or equal priority
than all other interaction to the CANdesc component.

Particularities and Limitations

= May not be called if the DescTask() is used. This will lead to either reentrancy
(consistency) problems or/and to timing issues.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

79/ 164

Technical Reference CANdesc vector

12.6.1.6 DescGetActivityState()

DescGetActivityState

Available since 2.00.00
Is Reentrant [X]
Is callback []

Prototype

Single Context

DescContextActivity DescGetActivityState (void)
Multi Context

DescContextActivity DescGetActivityState (vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

kDescContextIdle 1. Thereis currently no r_equest processing (even
, , when scheduler is active).
. kDescContextActiveRxBegin . . .
2. Currently request reception is active.
- kDescContexthActiveRxEnd 3. Reception finished, request will be processed.
. kDescContextActiveProcess 4. The request was received, is under processing
. kDescContextActiveProcessEnd now

5. DescProcessingDone called waiting for data
before starting the transmission.

Ready for response transmission.
- kDescContextActivePostProcess 7. Transmission of the response is currently active.

8. Transmission/processing ended. Post-processing
will be performed.

Functional Description

Motivation: Sometimes the knowledge about the presence of a tester is necessary. A typical
use-case is to avoid the ECU from going into sleep mode.

A non-default session indicates that a tester is present. But how can this be done, if the ECU is
in the default session?

Due to that fact the ECU application can call the function DescGetActivityState() any time to
check if CANdesc has something to do or is in idle mode. This can be used e.g. to change the
state of the ECU sleep mode.

Note: The return value is bit coded and any senseful combination of the above mentioned
values is possible (e.g. kDescContextActiveRxBegin | kDescContextActivePostProcess).
Please check always with bit test (and operation) and not using the value comparison.

. kDescContextActiveTxReady

. kDescContextActiveTx 6

w0 I o oo W N

Pre-conditions

Call context

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00 80/ 164

based on template version 5.1.0

Technical Reference CANdesc

12.6.2 Multi Variant Configuration Functions
12.6.2.1 DesclnitConfigVariant()

DesclnitConfigVariant

Available since 6.00.00
Is Reentrant []
Is callback []

Prototype
Single Context and Multi Context

void DescInitConfigVariant (DescVariantMask varMask)

Parameter

varMask Contains the VSG(s) that shall be active additionally to the base
variant

Return code

Functional Description

After CANdesc has been initialized via one of the APls
DesclnitPowerOn

or

Desclnit;

the base variant will be only active (refer to the chapter 8 Multi Identity for more details). If
additionally other variants shall be activated, this API shall be called with a parameter
value that represents the variants (multiple variants can be OR-ed) that shall be activated.

The variant values that shall be used for building the API parameter value are located in
the desc.h file. The naming convention is as follows:

kDescVariant<variant/VSG qualifier>

Pre-conditions
-Multi- variant (VSG) mode is activated for CANdesc.

Call context

Particularities and Limitations

= Shall not interrupt the DescTask function.

m Best place to call this API is immediately after the CANdesc initialization API-call while
the interrupts are still locked.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

81/164

Technical Reference CANdesc

12.6.2.2 DescGetConfigVariant()

DescGetConfigVariant

Available since 6.00.00
Is Reentrant []
Is callback []

Prototype

Single Context and Multi Context

Parameter

Return code

Variant mask

Functional Description

Pre-conditions

DescVariantMask DescGetConfigVariant (void)

This API returns the bit-mapped value of the currently active variants set in CANdesc.

The variant values that shall be used for checking the API return value are located in the
desc.h file. The naming convention is as follows:

kDescVariant<variant/VSG qualifier>

Represents the bit-mapped value of the currently active variants
in the ECU.

-Multi- variant (VSG) mode is activated for CANdesc.

Call context

- This API can be called from any call-context.

Particularities and Limitations

©2013, Vector Informatik GmbH

Version: 3.07.00

based on template version 5.1.0

vactor”

82 /164

Technical Reference CANdesc

12.6.3 Service Functions

12.6.3.1 DescSetNegResponse()

DescSetNegResponse

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype
Single Context

void DescSetNegResponse (DescNegResCode errorCode)
Multi Context

void DescSetNegResponse (vuint8 iContext, DescNegResCode errorCode)

iContext reference to the corresponding request context

errorCode the errorCode is the one of the provided error code constants
of CANdesc in the desc.h file with the following naming
convention:

kDescNrc<error name>.

Return code

Functional Description

In the PreHandler or in the MainHandler function the application has the possibility of
forcing negative response with a certain negative response code for the current request

when it is necessary.
Pre-conditions

Call context

Within a ‘Service PreHandler’ function and within or after a ‘Service MainHandler’ function

Particularities and Limitations

= Once an error was set it can not be overwritten or reset.

m This function does not finish the processing of the request. It just sets a certain error
and after that the application must confirm that the request processing was completely
finished by calling DescProcessingDone().

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

83 /164

Technical Reference CANdesc

12.6.3.2 DescProcessingDone()

DescProcessingDone

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype
Single Context

void DescProcessingDone (void)

Multi Context

void DescProcessingDone (vuint8 iContext)

Parameter
iContext reference to the corresponding request context

Return code

Functional Description

After completing the request execution the application must call the API function.

By calling this function, depending on the previous actions of the application the CANdesc
module will either send a response (positive/negative depending on the error state
machine) or no response will be send if the application/CANdesc decides that there must
be no response (please refer the Part 11l User Manual)

Pre-conditions

Call context
Within or after a ‘Service MainHandler’ function

Particularities and Limitations

12.6.4 Service callback functions

vactor”

In CANdesc 6 the naming convention of the service callback function has changed due to
standardization reasons. In Table 12-3, the new naming convention can be found. Earlier
versions of CANdesc (< 6.0) used always Service-Qualifiers and Instance-Qualifiers from
the CDD file. Since CANdesc 6, for Service-Qualifiers always standardized names are
used, whereas for Instance-Qualifiers either a standardized name or the name from the
CDD file is used. The names of the service callback functions are based on the following

pattern:
ApplDesc[Pre|Post]<ServiceQualifier><DiaglnstanceQualifier>

When migrating to CANdesc 6 the service callbacks have to be renamed according to the

new naming convention.

mw Instance-Qualifier Service-Qualifier

0x01 Default
0x10 StartSession
0x02 Programming

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

84 /164

Technical Reference CANdesc

mw Instance-Qualifier Service-Qualifier

0x11

0x14

0x19

0x22
0x23
0x24

0x27

0x28

©2013, Vector Informatik GmbH

0x03
0x01

0x02
0x03
0x04
0x05
None
0x01

0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
Ox0E
0xOF
0x10
0x11

0x12
0x13
0x14
0x15
0x16
0x41

0x42
0x55

Any
None
Any
Odd Id

Even Id
0x00
0x01

Extended

Hard

KeyOffOn

Soft
EnableRapidShutDown
DisableRapidShutDown
Diaglinfo
RNODTCBSM
RDTCBSM

RDTCSSI
RDTCSSBDTC
RDTCSSBRN
RDTCEDRBDN
RNODTCBSMR
RDTCBSMR
RSIODTC

RSUPDTC
RFTFDTC

RFCDTC
RMRTFDTC
RMRCDTC
RMMDTCBSM
RMDEDRBDN
RNOMMDTCBSM
RNOOBDDTCBSM
ROBDDTCBSM
RDTCFDC
RDTCWPS
RDTCRDIDBDN
RWWHOBDNDTCBMR
RWWHOBDDTCBMR
RWWHOBDDTCWPS

Instance-Qualifier from CDD
MemoryByAddress

Instance-Qualifier from CDD

Instance-Qualifier from CDD

EnableRxEnableTx
EnableRxDisableTx

EcuReset

Clear
ReadDtc

ReadDid

Read
ReadScalingDid
GetSeed
SendKey

CommCitr

Version: 3.07.00

based on template version 5.1.0

vactor”

85/ 164

Technical Reference CANdesc

mw Instance-Qualifier Service-Qualifier

0x02
0x03
0x01
0x02
0x03
0x04
0x01
0x2C 0x02
0x03
Ox2E Any
0x00
0x01
0x02
0x03
0x01
0x31 0x02
0x03
0x34 None
0x35 None
0x36 None
0x37 None
0x3D None
Ox3E 0x00
0x84 None
0x01
0x02
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x40
0x41
0x42
0x43
0x44
0x45

0x2A

0x2F

0x85

0x86

©2013, Vector Informatik GmbH

DisableRxEnableTx
DisableRxDisableTx

Instance-Qualifier from CDD

Instance-Qualifier from CDD

Instance-Qualifier from CDD

Instance-Qualifier from CDD

Instance-Qualifier from CDD

MemoryByAddress
TesterPresent

Enable

Disable

Stop
OnDtcStatChg
OnTmrlint
OnChgOfDid
ReportActEv
Start

Clear
OnCompOfVal
StStop
StOnDtcStatChg
StOnTmrint
StOnChgOfDid
StReportActEv
StStart

ReadDidSlow
ReadDidMed
ReadDidFast
ReadDidStop
DynDefineByDid
DynDefineByAddr
DynDefineClear
WriteDid
loCtrIRetCtrIToEcu
loCtrIRstToDefault
loCtrIFrzCurrState
loCtrIShortTermAd;
RtnCtriStart
RtnCtrlStop
RtnCtrIReqRes
RequestDownload
RequestUpload
TransferData
RequestTransferExit
Write

Send
SecuredDataTransmission

ControlDtcSetting

Roe

Version: 3.07.00

based on template version 5.1.0

vactor”

86 /164

Technical Reference CANdesc vector

Instance-Qualifier Service-Qualifier

0x46 StClear
0x47 StOnCompOfVal
0x01 VerifyFixedBaudrate
0x87 0x02 VerifySpecificBaudrate LinkControl
0x03 TransitionBaudrate

Table 12-3 Naming convention of service callback functions in CANdesc 6

12.6.4.1 Service PreHandler

ApplDescPre<Service-Qualifier + Instance-Qualifier>>

Available since 2.00.00
Is callback X

Prototype
Single Context

void ApplDescPre<Service-Qualifier + Instance-Qualifier> (void)
Multi Context

void ApplDescPre<Service-Qualifier + Instance-Qualifier> (vuint8 iContext)

Parameter

iContext the current request context location

Return code

Functional Description

The PreHandler is executed before the Service MainHandler is called. In the PreHandler,
the application can hook any (especially application-specific) state validations. One
PreHandler implementation may be shared with different service instances (only
CANdesc).

To allow quite complex operations to take place, the application has access to the request
data using the context data structure (if given).

Pre-conditions
Must be configured to ‘User’ in attribute ‘PreHandlerSupport”

Call context
From DescTask()

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00 87 /164

based on template version 5.1.0

Technical Reference CANdesc

12.6.4.2 Service MainHandler

Prototype
Single Context

ApplDesc<Service-Qualifier + Instance-Qualifier>

Available since 2.00.00
Is callback [X]

void ApplDesc<Service-Qualifier + Instance-Qualifier> (DescMsgContext* pMsgContext)

Multi Context

void ApplDesc<Service-Qualifier + Instance-Qualifier> (DescMsgContext* pMsgContext)

Parameter

typedef struct

pMsgContext {
DescMsg regData;
DescMsglLen regDatalen;
DescMsg resData;
DescMsglLen resDatalen;
DescMsgAddInfo msgAddInfo;
vuint8 iContext;
t descUsdtNetBus busInfo;
} DescMsgContext;
DescMsgAddInfo DescBitType reqType :2; /* 0x0l: Phys 0x02: Func */

DescBitType resOnReq :2; /* 0x0l: Phys 0x02: Func */
DescBitType suppPosRes:1; /* 0x00: No 0x01: Yes */

Read access

pMsgContext->reqData

pointer to the first byte of the already extracted request data.
pMsgContext->reqDatalLen

length of the extracted request data.
pMsgContext->iContext

the current request context location

(used only as a handle - DO NOT MODIFY).
pMsgContext->msgAddinfo.reqType

the current request addressing method. Could be either
,kDescFuncReq’ or kDescPhysReq’ (bitmapped).
pMsgContext->msgAddinfo.suppPosRes

if set, no positive response will be sent. (UDS only).

pMsgContext->businfo

the current request communication information (i.e. driver type (CAN,
MOST, FlexRay, etc.), addressing information, communication channel
number, tester address (if applicable) etc.

Write access

pMsgContext->resData

pointer to the first position where the response data can be written.
pMsgContext->resDatalLen

length of the written data.
pMsgContext->msgAddinfo.resOnReq

can be used to disable the response transmission on the current
request. If set to ‘0’ no response will be transmitted. Physical and
function can be set separately (bitmapped).

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

88 /164

Technical Reference CANdesc vector

Functional Description
The MainHandler processes the service request.

. Perform length validation for varying length information of request.

° Disassemble any data received with the request telegram and process it,.

° Assemble any data to be send with the response and update current response
length.

° Confirm that the processing is finished.

Pre-conditions
Must be configured to ‘User’ in attribute ‘MainHandlerSupport’

Call context
From DescTask()

Particularities and Limitations

m [f used as MainHandler for Protocol Services, the Protocol-Service-Qualifier is used
instead

©2013, Vector Informatik GmbH Version: 3.07.00 89/164

based on template version 5.1.0

Technical Reference CANdesc

12.6.4.3 Service PostHandler

ApplDescPost<Service-Qualifier + Instance-Qualifier>

Available since 2.00.00
Is callback [X]

Prototype
Single Context

void ApplDescPost<Service-Qualifier + Instance-Qualifier> (vuint8 status)
Multi Context

void ApplDescPost<Service-Qualifier + Instance-Qualifier> (vuint8 iContext,
vuint8 status)

iContext the current request context location
status (bit-coded) kDescPostHandlerStateOk

The positive response was transmitted successfully

kDescPostHandlerStateNegResSent
It was a negative response

kDescPostHandlerStateTxFailed
A transmission error occurred

Return code

Functional Description

Any state transition may not be performed before the current service is finished
completely (the last frame of the response is sent successfully).

The PostHandler is executed after a confirmation of the message transmission is received
and is designated for state adaptation — all other things are already done when the
PostHandler is called.

Pre-conditions
Must be configured to ‘User’ in attribute ‘PostHandlerSupport’

Call context
From DescTask()

Particularities and Limitations
m [f used as PostHandler for Protocol Services, the Protocol-Service-Qualifier is used
instead

m You can override the given name extension (Service-Qualifier + Instance-Qualifier) by
using the ‘PostHandlerOverrideName’.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

90/ 164

Technical Reference CANdesc vector

12.6.5 User (Unknown) Service Handling

In some cases the ECU shall support a service which is not described in the common way
for CANdesc (by means of CANdelaStudio/GENtool). With a little bit more effort inside the
application than for the “known” services the ECU is still be able to support those user
defined services. The effort comes form the fact that CANdesc knows nothing about this
service (e.g. session, security or other states described in the CDD configuring CANdesc,
addressing methods allowed for those services, etc.) and therefore the application must do
this work for each user defined service by itself. In fact for CANdesc there is only one
“‘unknown” service and it is up to the application to differentiate between multiple unknown
service(s).

Attention: This feature is available since version 2.11.00 of CANdesc(Basic).

12.6.5.1 How it works

If the feature “Support Generic User Service” is enabled in the GENtool CANdesc uses
following handling:

- if a service was not recognized by its SID, before the automatic negative
response transmission will be sent, the application will be called (see
12.6.5.2 ApplDescCheckUserService) to check this SID too. If it can not
recognize it as a valid one the usual negative response will be sent.

- If the application has accepted the SID, then a special “user service”
MainHandler will be called (see 12.6.5.4 Generic User Service MainHandler).

- If in GENtool “Support Generic User Service PostHandler” is set, after the
request processing has been accomplished, a special “user service”
PostHandler will be called (see 12.6.5.5 Generic User Service PostHandler).

Note:

- Since CANdesc doesn’t distinguish user defined services, a special APl was
designed to get the application the opportunity to dispatch among the SIDs
(in MainHandler and in the PostHandler).

- The user defined services are processed on service id level which means the
application shall dispatch and do the whole format check of these requests.
The state management shall be performed bye application, too.

©2013, Vector Informatik GmbH Version: 3.07.00 91/164

Technical Reference CANdesc

12.6.5.2 ApplDescCheckUserService()

ApplDescCheckUserService

Available since 2.11.00
Is callback [X]

Prototype
Single Context

vuint8 ApplDescCheckUserService (DescMsgltem sid)
Multi Context

vuint8 ApplDescCheckUserService (DescMsgltem sid)

Parameter
sid The service identifier which is currently under processing.

Return code

1. kDescOk 1. Return this value if the service id is a “user defined” one.

2. Return this value if the service id is unknown for the
application too.

2. kDescFailed

Functional Description

The currently received request contains an unknown for CANdesc service Id. Within this
function the ECU application has to decide immediately if the SID is one of the user

defined or not. Depending on the return value, CANdesc will process further this request
or will reject it by sending negative response ‘ServiceNotSupported’.

Pre-conditions
The “Support Generic User Service” option was enabled in the GENtool configuration.
Call context

From DescTask() (in KWP diagnostics also from RxInterrupt).

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

92 /164

Technical Reference CANdesc vector

12.6.5.3 DescGetServiceld()

DescGetServiceld

Available since 2.11.00
Is Reentrant []
Is callback []

Prototype
Single Context

DescMsgltem DescGetServiceId (void)
Multi Context

DescMsgltem DescGetServiceId (vuint8 iContext)

Parameter
iContext The current request context location

Return code

DescMsgTtem The service id which is currently under processing.

Functional Description
Reports the service id of the currently processed user-service request.

Pre-conditions

The “Support Generic User Service” option was enabled in the GENtool configuration.

Call context
From DescTask()

Particularities and Limitations

m This function may be called at any time within a diagnostic request life cycle starting at
the call of the MainHandler and ending by the PostHandler (if configured) or (if none
configured) by calling DescProcessingDon

©2013, Vector Informatik GmbH Version: 3.07.00 93/164

based on template version 5.1.0

Technical Reference CANdesc vector

12.6.5.4 Generic User Service MainHandler

ApplDescUserServiceHandler

Available since 2.11.00
Is callback [X]

Prototype
Single Context

void ApplDescUserServiceHandler (DescMsgContext* pMsgContext)
Multi Context

void ApplDescUserServiceHandler (DescMsgContext* pMsgContext)

Parameter

pMsgContext Refer the section 12.6.4.2 Service MainHandler for details about this
parameter.

Read Access pMsgContext->reqData
pointer to the first byte after the service Id.

The other members of the parameter are described in 12.6.4.2 Service
MainHandler

Write access | PMsgContext->resData
pointer to the first byte after the response SID, where the data (incl. sub-
parameters) will be written.

The other members of the parameter are described in 12.6.4.2 Service
MainHandler

Return code

Functional Description

This MainHandler is called for all unknown service requests at service id level, so the
application has to do following:

. Perform service id dispatching (if more than one user defined service shall be
used).

. Perform length validation for varying length information of request.

° Perform parameter (if any) validation.

° Disassemble any data received with the request telegram and process it.

° Assemble any data to be send with the response and update current response
length

. Confirm that the processing is finished.

Pre-conditions

The “Support Generic User Service” option was enabled in the GENtool configuration.
Call context

From DescTask()

Particularities and Limitations

m Refer the section 12.6.4.2 Service MainHandler.

m DescGetServiceld() may be called here to dispatch the SID of the currently processed
user service (refer 12.6.5.3 DescGetServiceld

©2013, Vector Informatik GmbH Version: 3.07.00 94 / 164

based on template version 5.1.0

Technical Reference CANdesc vector

12.6.5.5 Generic User Service PostHandler

ApplDescPostUserServiceHandler

Available since 2.11.00
Is callback [X]

Prototype

Single Context

void ApplDescPostUserServiceHandler (vuint8 status)
Multi Context

void ApplDescPostUserServiceHandler (vuint8 iContext, wvuint8 status)

Parameter
Refer 12.6.4.3 Service PostHandler for information.

iContext, status

Return code

Functional Description

The functionality of the user service PostHandler is the same as the one of the normal
service PostHandler. Refer 12.6.4.3 Service PostHandler for more details.

The “Support Generic User Service PostHandler” option was enabled in the GENtool
configuration.

CANdesc version >=2.11.00
Call context

From DescTask()

Particularities and Limitations

m Refer the section 12.6.4.3 Service PostHandler for information.

m DescGetServiceld() may be called here to dispatch the SID of the currently post-
processed user service (refer 12.6.5.3 DescGetServiceld

©2013, Vector Informatik GmbH Version: 3.07.00 95/ 164

based on template version 5.1.0

Technical Reference CANdesc

12.6.6 Session Handling
12.6.6.1 ApplDescCheckSessionTransition()

ApplDescCheckSessionTransition

Available since 2.00.00
Is callback [X]

Prototype
Single Context

void ApplDescCheckSessionTransition (DescStateGroup newState, DescStateGroup
formerState)

Multi Context

void ApplDescCheckSessionTransition (vuint8 iContext, DescStateGroup newState,
DescStateGroup formerState)

iContext the current request context location
newState the CANdesc component has change to this session state
formerState the CANdesc component has change from this session state

Return code

Functional Description

This hook function will be called, while session request is received (SID $10). If the
application wants to discard this request, an error must be set (via
DescSetNegResponse()).

The application always has to confirm this hook function via
DescSessionTransitionChecked().

Both above functions can be called also outside of the context of this function (e.g.
application task waiting for results form an 1/0O port). CANdesc will send RCR-RP
response as long as the application delays the confirmation for the session transition.

In some cases the application has to know whether the SPRMIB in the request was set or
not. Since this API call does not contain this information, a dedicated API in CANdesc
provides it: DesclsSuppressPosResBitSet ().

Pre-conditions

At least one DiagnosticSessionControl service must be configured to ‘OEM’ in attribute
‘MainHandlerSupport’

Call context
From DescTask()

Particularities and Limitations

m Call the API function DescSessionTransitionChecked() to end the service processing
|

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

96 / 164

Technical Reference CANdesc

12.6.6.2 DescSessionTransitionChecked()

DescSessionTransitionChecked

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescSessionTransitionChecked (void)

Multi Context

void DescSessionTransitionChecked (vuint8 iContext)

Parameter

iContext the current request context location

Return code

Functional Description

After the application has finished the processing in the hook function
ApplDescCheckSessionTransition() this function must be called.

At least one DiagnosticSessionControl service must be configured to ‘OEM’ in attribute
‘MainHandlerSupport’

Call context

Within or after a ‘ApplDescCheckSessionTransition()’ function

Particularities and Limitations

= [f this function will be called late, the CANdesc component sends automatically the
RCR-RP responses

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

97 / 164

Technical Reference CANdesc

12.6.6.3 DesclsSuppressPosResBitSet ()

DesclsSuppressPosResBitSet

Available since 5.07.14
Is Reentrant []
Is callback []

Prototype
Single Context

DescBool DesclsSuppressPosResBitSet (void)
Multi Context

DescBool DesclsSuppressPosResBitSet (vuint8 iContext)

Parameter

iContext the current request context location

Return code

kDescTrue The SPRMIB is set.
The SPRMIB is NOT set.

kDescFalse

Functional Description

This API can be always called while a diagnostic service processing is ongoing to get the
information about the SPRMIB state. All main-handlers do contain this information already
in the pMsgContext parameter so use it instead of this API.

In some other cases the application does not have access to the pMsgContext, and there
the API can be used.
Pre-conditions

Only for UDS configurations.

May be called only while a diagnostic service processing is ongoing. Otherwise invalid
data can be reported.

Call context
Any.

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

98/ 164

Technical Reference CANdesc

12.6.6.4 ApplDescOnTransitionSession()

ApplDescOnTransitionSession

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype
Single Context

void ApplDescOnTransitionSession (DescStateGroup newState,
DescStateGroup formerState)

Multi Context

void ApplDescOnTransitionSession (DescStateGroup newState,
DescStateGroup formerState)

newState the CANdesc component has change to this session state
formerState the CANdesc component has change from this session state

Return code

Functional Description

After the positive response of a SessionControl request the session will transit to the
requested session. This function informs the application that such a transition occurs.

Pre-conditions

Call context

From DescTask()
interrupts might be disabled

Particularities and Limitations
= Only informational function

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

99 /164

Technical Reference CANdesc

12.6.6.5 DescSetStateSession()

DescSetStateSession

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescSetStateSession (DescStateGroup newSession)

Multi Context

void DescSetStateSession (DescStateGroup newSession)

Parameter
newSession the CANdesc component will change to this session state

Return code

Functional Description

By this function the state of the SessionState-group can be changed by the ECU
application. The transition notification function ‘ApplDescOnTransitionSession’ will be
called to notify the application about the new session.

Pre-conditions

Call context

Particularities and Limitations

m Refer the section 12.6.11.2 "DescSetState<StateGroup>()” for more details.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

100/ 164

Technical Reference CANdesc

12.6.6.6 DescGetStateSession()

DescGetStateSession

Available since 2.00.00
Is Reentrant [X]
Is callback []

Prototype

Single Context

currentSession DescGetStateSession (void)

Multi Context

currentSession DescGetStateSession (void)

Parameter

Return code
currentSession

Functional Description

This function returns the current session state. Since the states are bit-coded the
evaluation expressions may be optimized for multiple use cases.

Example: Code execution only when either default or extended session is active.

1State = DescGetStateSession();
if ((1State & (kDescStateSession<Default>) | kDescStateSession<Extended>)) != 0)
{

/*execute code*/

}
Pre-conditions

Call context

Particularities and Limitations

m Refer the section 12.6.11.1 “DescGetState<StateGroup>()” for more details.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

101/ 164

Technical Reference CANdesc

12.6.6.7 DescGetSessionldOfSessionState

DescGetSessionldOfSessionState
Available since 3.00.00

Is Reentrant [X]

Is callback []

Prototype

Any Context

DescMsgltem DescGetSessionIdOfSessionState (DescStateGroup sessionState)

Parameter

sessionState - Must be one of the valid session states (i.e. the value of the
API DescGetStateSession()).

Return code
DescMsgTtem - Is the corresponding session identifier value.

Functional Description

This function provides a conversion from a session state to its corresponding session
identifier (e.g. calling this function with parameter kDescStateSessionDefault will return
0x01).

Pre-conditions

Call context

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

102/ 164

Technical Reference CANdesc

12.6.7 CommunicationControl Handling

vactor”

This API is provided, if the ECU supports the serviceCommunicationControl (UDS) or

service 0x28/0x29 Dis-/EnableNormalMessageTransmission (KWP).

12.6.7.1 ApplDescCheckCommCitrl()

ApplDescCheckCommCitrl

Available since 2.00.00
Is callback [X]

Prototype
Single Context

void ApplDescCheckCommCtrl (DescOemCommControlInfo* commControlInfo)
Multi Context

void ApplDescCheckCommCtrl (vuint8 iContext,
DescOemCommControlInfo* commControlInfo)

Parameter
iContext The current request context location
commControlInfo OEM dependent

Return code

Functional Description

The execution of this service is completely done within the CANdesc component. This
hook function can be used to permit the application to reject the execution under some
circumstance. If the application wants to discard this request, an error must be set (via
DescSetNegResponse()).

The application always has to confirm this hook function (via DescCommCtriChecked()).

Pre-conditions

The CommunicationControl service must be activated and the attribute
‘MainHandlerSupport’ has to be set to ‘OEM’

Call context

From DescTask()

Particularities and Limitations

= [f the API function DescCommCtriChecked() will be not called, the service processing
will not end

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

103 /164

Technical Reference CANdesc

12.6.7.2 DescCommCitrIChecked()

DescCommCtriChecked

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescCommCtrlChecked (void)
Multi Context

void DescCommCtrlChecked (vuint8 iContext)

Parameter

iContext the current request context location

Return code

Functional Description

The CANdesc component calls a hook function to check for the execution permission of
the CommunicationControl service. Within or after this hook function
(ApplDescCheckCommCtrl()) the application can set an error
(DescSetNegResponse()) to reject the request. This function is used to terminate the
hook function ApplDescCheckCommCtrl().

The CommunicationControl service must be activated and the attribute
‘MainHandlerSupport’ has to be set to ‘OEM’

Call context

Within or after ApplDescCheckCommCitrl()

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

104 / 164

Technical Reference CANdesc

12.6.8 Periodic call of ‘Service MainHandler’
12.6.8.1 DescStartRepeatedServiceCall()

DescStartRepeatedServiceCall

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype
Single Context

void DescStartRepeatedServiceCall (DescMainHandler descMainHandler)
Multi Context

void DescStartRepeatedServiceCall (vuint8 iContext, DescMainHandler descMainHandler)

Parameter

descMainHandler Reference to a function. The function prototype must be based
on a ‘Service MainHandler’.

iContext The current request context location

Return code

Functional Description

The application can use this function to get a periodic call to the specified function (in the
parameter) from the CANdesc component.

It is possible to use the same ‘Service MainHandler’ function as it is called in.

Pre-conditions

Call context
Within or after a ‘Service MainHandler’ function
Particularities and Limitations

m CANdesc can do no validation, if this pointer is valid.
m Is the parameter NULL, the periodic calls will get stopped.
m The function is called in the same cycle time (context) as the DescTask()

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

105/ 164

Technical Reference CANdesc

12.6.8.2 DescStartMemByAddrRepeatedCall()

DescStartMemByAddrRepeatedCall

Available since 5.06.04
Is Reentrant []
Is callback []

Prototype

Single Context

void DescStartMemByAddrRepeatedCall ()
Multi Context

void DescStartMemByAddrRepeatedCall (vuint8 iContext)

Parameter

iContext The current request context location

Return code

Functional Description

The application can use this function to get a periodic call to the current Read/Write
memory by address handler.

Pre-conditions

Call context

Within ApplDescReadMemoryByAddress or ApplDescWriteMemoryByAddress.

Particularities and Limitations

m The memory access handler is called in the same cycle time (context) as the
DescTask()

12.6.9 Ring Buffer Mechanism

vactor”

The ring-buffer option can be used to save RAM when some responses are quite long and
reserving such space of RAM is impossible. In contrast to the linear responses, where the
response data will be first written and then the transmission to the tester will be initiated,
the ring-buffer concept starts a transmission as soon as it has either the whole data (for
short [single frame] responses) or at least enough data to fill a first-frame of a multi-frame
transmission. Once the ring buffer has been activated and the response transmission
initiated, the application must supply enough data to keep the transmission away from lack
of data. In multiple PID mode, the application can decide in each PID main handler to use
the ring buffer or not. However, if one of the PIDs has dynamic length, the ring buffer

mechanism can not be used for any PID in the list.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

106 / 164

Technical Reference CANdesc vector

e 'I Note
) The ring buffer should only be used for long responses, because using the ring buffer
) instead of the linear buffer causes a runtime overhead.

©2013, Vector Informatik GmbH Version: 3.07.00 107 / 164

based on template version 5.1.0

Technical Reference CANdesc

12.6.9.1 DescRingBufferStart()

DescRingBufferStart

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescRingBufferStart (void)
Multi Context

void DescRingBufferStart (vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

Functional Description

After completing the request validation the application can decide (in runtime), if the ring-
buffer mechanism should be used or not.

By calling this function, the decision is made to use the ring-buffer. Otherwise
DescProcessingDone() should be called, after filling the response data (in a linear way).
Either DescProcessingDone() or DescRingBufferStart() will finish the response handling.
Depending on the previous actions of the application the CANdesc module will either send
a response (positive/negative depending on the error state machine) or no response will
be send if the application/CANdesc decides that there must be no response (please refer
the Part lll User Manual).

The transmission of the positive response will not start immediately. The application has to
fill the ring-buffer first. If the ring-buffer has enough data, the transmission will be started
(internally).

Pre-conditions

- ring-buffer has been enabled in the configuration

Call context

Within or after a ‘Service MainHandler’ function

Particularities and Limitations

= This APl must not be called from any of the other handler type (Pre- or PostHandlers)

m Either DescProcessingDone() or DescRingBufferStart() must be used to finish the
response handling.

Total response length must be written before!

No response data must be written before!

This function must not be called in interrupt context

Limitation: Until CANdesc version 2.13.00 it was not possible to use the Ring-Buffer in
‘Multiple PID’ services (as described in section 9.1.3 Multiple PID mode)

= UDS limitation: Always check the SPRMIB prior starting the ring-buffer. If this bit is

set, the ring-buffer shall not be started. Instead DescProcessingDone() must be called
(see 13.6).

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

108/ 164

Technical Reference CANdesc

12.6.9.2 DescRingBufferWrite()

DescRingBufferWrite

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype
Single Context

vuint8 DescRingBufferWrite (DescMsg data, DescMsglen datalLength)
Multi Context

vuint8 DescRingBufferWrite (vuint8 iContext, DescMsg data, DescMsgLen datalength)

iContext Reference to the corresponding request context

DescMsg Pointer to application data, which should be copied into ring-
buffer.

DescMsgLen Amount of data, which should be copied (from pointer data) into
ring-buffer.

vuints kDescOk
If the copy process was successful
kDescFailed

if the data are not copied into the ring-buffer

Functional Description

The application writes data into the ring-buffer by this function. It is not necessary that the
application must write the data in the context of a special API function.

The write order is always linear! The first written byte is the first byte in the response
message.

Pre-conditions

- ring-buffer has been enabled in the configuration;
- DescRingBufferStart() must be called first, to activate the ring-buffer mechanism.

Call context

- This API shall not interrupt the DescTask. Required for the case the currently ongoing
transmission is interrupted due to a communication error, and the application still writes
into the buffer.

Particularities and Limitations

m datalLength must be lower or equal to the ring-buffer size, else the function will
always fail

m CANdesc has already filled the first bytes (SID, etc.) into the ring-buffer. So in the first
call of DescRingBufferWrite() the dataLength must lower as the buffer size + these
byte

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

109/ 164

Technical Reference CANdesc

12.6.9.3 DescRingBufferCancel()

DescRingBufferCancel

Available since 5.01.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescRingBufferCancel (void)
Multi Context

void DescRingBufferCancel (vuint8 iContext)

Parameter

iContext Reference to the corresponding request context

Return code

Functional Description

The application may call this API once the a data acquisition error has been occurred after
the ring-buffer has been activated via DescRingBufferStart().

CANdesc will automatically determine the appropriate action depending on its current
internal state:

- if the response data transmission has not been started yet, a negative
response will be sent back.

- If the response transmission has been started — a transmission interrupt
will occur — the tester will not get a complete response.

- ring-buffer has been enabled in the configuration
- DescRingBufferStart() must be called before to activate the ring-buffer mechanism

Call context

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

110/ 164

Technical Reference CANdesc

12.6.9.4 DescRingBufferGetFreeSpace()

Prototype
Single Context

DescRingBufferGetFreeSpace

Available since 2.00.00
Is Reentrant []
Is callback []

DescMsgLen DescRingBufferGetFreeSpace (void)

Multi Context

DescMsglLen DescRingBufferGetFreeSpace (vuint8 iContext)

Parameter

iContext

Return code
DescMsglLen

Functional Description

reference to the corresponding request context

The amount of free space/bytes in the ring-buffer.

This function returns the amount of free space/bytes in the ring-buffer.

Pre-conditions

ring-buffer has been enabled in the configuration

DescRingBufferStart() must be called before to activate the ring-buffer mechanism

Call context

©2013, Vector Informatik GmbH

Version: 3.07.00

based on template version 5.1.0

vactor”

111/ 164

Technical Reference CANdesc vector

12.6.9.5 DescRingBufferGetProgress()

DescRingBufferGetProgress

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

DescMsglLen DescRingBufferGetProgress (void)
Multi Context

DescMsglLen DescRingBufferGetProgress (vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

DescRingBufferProgress | Current byte position in the whole response.

Functional Description
This function returns the progress of the copy process.
Pre-conditions

- ring-buffer has been enabled in the configuration
- DescRingBufferStart() must be called before to activate the ring-buffer mechanism

Call context

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00 112/ 164

based on template version 5.1.0

Technical Reference CANdesc vector

12.6.10 Signal Interface of CANdesc

CANdesc will provide a signal interface to the ECU application. This can help the ECU
application to assemble the response automatically. No further code changes are
necessary, if a signal will move or change its size.

The current implementation has only support for a synchronous signal interface. This
means the ECU application has to provide the signal value within the call/context of the
Signal Handler function (while reading) or to write thewithin the call/context of the Signal
Handler function (while writing).

12.6.10.1 ApplDesc<Signal-Handler>()

ApplDesc<Signal-Handler>

Available since 2.00.00
Is callback [X]

Prototype
Single Context

- ApplDesc<Service-Qualifier + Data-Object-Qualifier + Instance-Qualifier> (-)
Multi Context

- ApplDesc<Service-Qualifier + Data-Object-Qualifier + Instance-Qualifier> (-)

vuint8, vsints, Available for write services.
vuintl6, vsintlé, Type depend on signal type

vuint32, vsint32,
DescMsg (vuint8*)

DescMsg (vuint8%) Available for read services and signals > 32 bit (N bit)

Return code

vuint8, vsints, Available for read services.

vuintl6, vsintlé, Type depend on signal type.
vuint32, vsint32

Functional Description

A Signal Handler is generated if the Service MainHandler is configured to be generated. In
this case, writing Signal Handlers are generated for all dataObjects transported with the
request and reading Signal Handlers are generated for all dataObjects transported with
the response (read/write from application point of view).

The data type of the Signal Handler argument depends on the dataObject which is to be
processed.

Pre-conditions
Must be configured to ‘generated’ in attribute ‘MainHandlerSupport’

Call context
From DescTask()
Particularities and Limitations

®m You can override the given name extension (Service-Qualifier + Data-Object-Qualifier
+ Instance-Qualifier) by using the SignalHandlerOverrideName.

©2013, Vector Informatik GmbH Version: 3.07.00 113 /164

based on template version 5.1.0

Technical Reference CANdesc vector

12.6.10.2 Configuration of direct signal access

e Application variable for direct access (default = not set)
If this variable is specified, an access to the given external (= application) variable is
generated. Nothing has to be done by the application. The external variable must
be defined inside the application.

o SignalHandlerOverrideName (default = not set).
You can adapt the name of the Signal Handler setting this value. By using this
“Override Name” it is also possible to reuse an already existing Signal Handler

12.6.11 State Handling (CANdesc only)
12.6.11.1 DescGetState<StateGroup>()

DescGetState<StateGroup>

Available since 2.00.00
Is Reentrant [X]
Is callback []

Prototype

Single Context

DescStateGroup DescGetState<StateGroup—Qualifier> (void)
Multi Context

DescStateGroup DescGetState<StateGroup—Qualifier> (void)

Parameter

Return code

DescStateGroup The current state of the state group

Functional Description

This function returns the current session state. Since the states are bit-coded the
evaluation expressions may be optimized for multiple use cases.

Example: Code execution only when either the current state of this group is either state X
or state Y.

1State = DescGetState< StateGroupQualifier >();

if ((1State & (kDescState< StateGroupQualifier ><StateQualifier X>) |

kDescState< StateGroupQualifier ><StateQualifier ¥Y>)) != 0)

{

/*execute code*/

}

Pre-conditions

Call context

Particularities and Limitations

m For each state of a state-group a constant is defined in desc.h:
kDescState<StateGroup-Qualifier><StateQualifier>

©2013, Vector Informatik GmbH Version: 3.07.00 114/ 164

based on template version 5.1.0

Technical Reference CANdesc vector

12.6.11.2 DescSetState<StateGroup>()

DescSetState<StateGroup>

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescSetState<StateGroup-Qualifier> (DescStateGroup newState)
Multi Context

void DescSetState<StateGroup-Qualifier> (DescStateGroup newState)

Parameter

DescStateGroup the state in which the state group should be changed

Return code

Functional Description

By this function the state of the state-group can be changed by the ECU application. The transition
notification function ‘ApplDescOnTransition< StateGroupQualifier >’ will be called to notify the
application about the new state.
Example:

DescSetState<StateGroupQualifier> (kDescState<StateGroupQualifier><StateQualifier>);

This line will force CANdesc to change the state of the given state group to the new one.

Pre-conditions

Call context

-From a task with priority lower or equal to the DescTask.

Particularities and Limitations
m For each state of a state-group a constant will be defined in desc.h:
kDescState<StateGroup-Qualifier><State-Qualifier>

= The ApplDescOnTransition<StateGroup-Qualifier>() notification function is called in any
case. Also if the newState is the same as the current stat

©2013, Vector Informatik GmbH Version: 3.07.00 115/ 164

based on template version 5.1.0

Technical Reference CANdesc

12.6.11.3 ApplDescOnTransition«StateGroup»()

ApplDescOnTransition«StateGroup»

Available since 2.00.00
Is Reentrant []
Is callback []

Prototype

Single Context

void ApplDescOnTransition<StateGroup-Qualifier>(DescStateGroup newState,
DescStateGroup formerState)

Multi Context

void ApplDescOnTransition<StateGroup-Qualifier> (DescStateGroup newState,
DescStateGroup formerState)

Parameter
newState the CANdesc component has changed to this session state
formerState the CANdesc component has changed from this session state

Return code

Functional Description

This notification function will be called each time a transition has happened.

Pre-conditions

Call context

From DescTask()
interrupts might be disabled

Particularities and Limitations

m For each state of a state-group a constant will be defined in desc.h:
kDescState<StateGroup-Qualifier><StateName-Qualifier>

m For some exceptions (e.g. Session) the newState can be the same as the formerState.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

116 / 164

Technical Reference CANdesc vector

12.6.12 Force “Response Correctly Received - Response Pending” transmission

In some cases it is useful for the application to be sure that it has enough time to
accomplish a process without causing the tester to get response timeout. In such cases
the application can use the “force RCR-RP” mechanism of CANdesc, which prevents
timeout between the tester and the ECU application.

How it works:

This feature is mostly applicable when a FlashBootLoader (FBL) is available for the ECU.
Before starting it, the application wants to assure that there is enough time to perform
reset and activate the FBL before the tester gets response timeout. The RCR-RP
mechanism notifies the tester that some action is ongoing and so resets the timeout timer
in the tester.

To transmit a ‘Response Correctly Received - Response Pending’ response the application
has to call the DescForceRcrRpResponse() function. To be sure this response is
transmitted, the application has to wait for the transmission confirmation of this forced
RCR-RP response (the function ApplDescRcrRpConfirmation). Depending on its
transmission status parameter the application can decide how the processing shall
continue (a jump to FBL or to close the request processingth negative response).

©2013, Vector Informatik GmbH Version: 3.07.00 117 /164

Technical Reference CANdesc

12.6.12.1 DescForceRcrRpResponse()

DescForceRcrRpResponse

Available since 2.11.00
Is Reentrant []
Is callback []

Prototype

Single Context

void DescForceRcrRpResponse (void)
Multi Context

void DescForceRcrRpResponse (vuint8 iContext)

Parameter

iContext reference to the corresponding request context

Return code

Functional Description

Calling this function the application can force CANdesc to send immediately (not later than
the next call of DescTask() function) a RCR-RP response.

Pre-conditions
CANdesc was configured to use this option (enabled in the GENtool).
Call context

Task or interrupt.

Particularities and Limitations

m This function can be called:
after a call of a MainHandler function (e.g. ApplDescCheckSessionTransition())
and until the call of ApplDescResponsePendingOverrun() or
ApplDescResponsePendingOvertimed() orpConfirmation().

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

118/ 164

Technical Reference CANdesc vector

12.6.12.2 ApplDescRcrRpConfirmation()

ApplDescRcrRpConfirmation

Available since 2.11.00
Is callback [X]

Prototype
Single Context

void ApplDescRcrRpConfirmation (vuint8 status)
Multi Context

void ApplDescRcrRpConfirmation (vuint8 iContext, wvuint8 status)

Parameter
iContext Reference to the corresponding request context
status If the transmission was successful, the parameter value will be

kDescOk. Otherwise — kDescFailed.
Return code

Functional Description

Once the RCR-RP response has been forced, this function will be called in any case. The
transmission status is reported by the status parameter.

Pre-conditions
CANdesc was configured to use this option (enabled in the GENtool).

Call context

CAN Driver TX-ISR = TP Confirmation = this function

Particularities and Limitations

m Be aware of time consuming implementation for this function (interrupt call context).

12.6.13 DynamicallyDefineDataldentifier ($2C) (UDS) functions

Since this feature is only for some OEM available, please refer to the OEM specific documentation
to find out if is applicable for your configuration.

©2013, Vector Informatik GmbH Version: 3.07.00 119/ 164

based on template version 5.1.0

Technical Reference CANdesc

12.6.13.1 DescMayCallStateTaskAgain()

DescMayCallStateTaskAgain
Available since 4.00.00

Is Reentrant []
Is callback []

Prototype
Single Context

DescBool DescMayCallStateTaskAgain (void)
Multi Context

DescBool DescMayCallStateTaskAgain (void)

Parameter

Return code
kDescTrue TRUE if you may call again the state task within this application
task cycle.

FALSE if the DescStateTask() must not be called again.

kDescFalse

Functional Description

Motivation: The DescStateTask() can be called as fast as possible but it still can not be
enough fast for complex service processing (e.g. DDIDs containing long descriptions) to
match fast timing-performance requirements. This function provides the info if the
application may call again the state-task in the same task context without causing endless
loop (important for non-preemptive OS environments).

Example of the API usage:

void ApplDiagTask(void) /* application function called as fast as possible */
{

do /* pump the state task as long as needed */
{
DescStateTask() ;

}
while (DescMayCallStateTaskAgain () == kDescTrue) ;

|

Pre-conditions

- Preprocessor define “DESC_ENABLE_HIPERFORMANCE_DYNDID_MODE’ is
available (using user-config file in GENtool).

- The application uses the split-task concept (i.e. calls DescState-/TimerTask() instead of
DescTask()).

Call context

Background-loop level or OSEK-OS Task. The Task should have a lower or equal priority
than all other interaction to the CANdesc component.

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

120/ 164

Technical Reference CANdesc vector

12.6.13.2 ApplDescCheckDynDidMemoryArea()

ApplDescCheckDynDidMemoryArea

Available since 3.02.00
Must be Reentrant [X

Is callback [X]

Prototype
Any Context
DescDynDidMemCheckResult ApplDescCheckDynDidMemoryArea (

DescDynDidMemBlockAddress srcAddr,

DescDynDidMemBlockSize len) ;
Parameter
srcAddr Start address (Service $2C 02 request parameter ‘memoryAddress’).
len Length of block to read (Service $2C 02 request parameter

‘memorySize’).

Return code

memBlockOk Permit the access to requested memory block and extend the DDID.

memBlockInvaddress Forbid the access due invalid requested memory address
(requestOutOfRange).

memBlockInvSize Forbid the access due invalid requested block length
(requestOutOfRange).

memBlockInvSecurity Forbid the access due current security mode settings prohibit the DDID
definition (securityAccessDenied).

memBlockInvCondition Forbid the access due other restrictions (conditionsNotCorrect).

If the memory access if forbidden, the Service $2C Request is negative responded with NRC 22
(conditionsNotCorrect), 31 (requestOutOfRange) or 33 (securityAccessDenied).

Functional Description

This callback function is triggered when defining a DDID that shall read bytes from the ECU’s
memory (Service Request $2C 02). The application can permit the (re-)definition of the DDID or
forbid it.

The service request is responded according to this.

The application must check

e if the given srcAddr and following 1en bytes are valid ECU addresses and if they are
readable,

o if the current security state allows to define the DDID right now,

o if there are other conditions that may forbid the definition of the DDID.
If all checks allow the DDID definition, the callback function must return memB1ockOk.
FYIl: When later reading the defined DDIDs by service $22, the standard checks [of Service $23
ReadMemoryByAddress] are executed, that perform security checks before accessing the
memory.
So, abgve security check with service $2C shall prove that the current security state permits the
definition of the DDID, the security check in service $22 (resp. $23) proves [in the context of the
then existing security state] the actual reading of the memory range.

Pre-conditions

©2013, Vector Informatik GmbH Version: 3.07.00 121/ 164

based on template version 5.1.0

Technical Reference CANdesc vector

Call context
From DescTask()

Particularities and Limitations

12.6.13.3 Non-volatile memory support

For some car-manufactures CANdesc provides NVRAM support for the dynamically
defined DID definitions. There are some APIs that must be operated and some call-backs
to be implemented by the application in order to get the NVRAM support fully operational.

The following diagrams show the two oeprations on NVRAM - restore (at power on) and st
ore (usuall prior power off) data.

Caution
&D At each CANdesc initialization (e.g. ECU reset/ power on) the “restore” procedure must
be performed!

©2013, Vector Informatik GmbH Version: 3.07.00 122/ 164

based on template version 5.1.0

Technical Reference CANdesc

sd NVram_Restore /

Tester

CANd

esc Appl

ication

Reset/ PowerO n/()

DesclnitPowerOn()

T

__________________________ >

[E2ZPROM manager ready]:DescDynDefine DidPowerUp() :
e}

ApplDescRestoreDynldMemContent(targetPtr, Size)

alt Synchronous acknowledge/
[E2PROM data available inmediately]

DescDynldMemContentRestored(Size, CheckSum)

alt Asynchronous acknowledge/

RQ: 0x2C(any)

RS: OX7F(0x22)

gn

Ol

[E2PRO:M data need more time o be fetrieved]

DescDynldMemContentRestored(Size, CheckSum)

Response type
dependson the
request data

validity.

©2013, Vector Informatik GmbH

Figure 12-1 DynDID definition restore and tester interaction

Version: 3.07.00

vactor’

123 /164

Technical Reference CANdesc vector

Info
The store operation can be performed at any time not only at power down.

sd NVram_Store

CANdesc Application
T T
1 | On System
! I Shutdown()
I I
I
I
| DescDynDefineDidPowerDown()
el
ApplDescStoreDynldMemContent(targetPtr, Size, Checksum)
M e m m e m e e e e e e oo
e
<shutdown>()
I I
I I
X ; Store the Data()
: Perform Shutdown()
I
I
b d

Figure 12-2 Store DynDID definitions

©2013, Vector Informatik GmbH Version: 3.07.00 124 /164

Technical Reference CANdesc

12.6.13.3.1 DescDynDefineDidPowerUp()

DescDynDefineDidPowerUp
Available since 5.06.09

Is Reentrant []

Is callback []

Prototype

Single Context

void DescDynDefineDidPowerUp (void)
Multi Context

void DescDynDefineDidPowerUp (void)

Parameter

Return code

Functional Description

Once the ECU has been powered one/reset or just need to be reinitialized, this APl must
be called to restore the dynamically defined DID content.

Usually called after the NVRAM manager is initialized.

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context
- any

Particularities and Limitations

m Must be called after DesclnitPowerOn().

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

125/ 164

Technical Reference CANdesc

12.6.13.3.2 DescDynldMemContentRestored ()

DescDynldMemContentRestored
Available since 5.06.09

Is Reentrant []

Is callback []

Prototype
Single Context

void DescDynIdMemContentRestored (DescDynDidStorageInfo storageInfo)
Multi Context

void DescDynIdMemContentRestored (DescDynDidStorageInfo storageInfo)

Parameter

storageInfo.nvData Not used
The size (in bytes) of the restored table.

storageInfo.nvDataSize .
The stored checksum, calculated by CANdesc at store time.

storageInfo.checkSum

Return code

Functional Description

After CANdesc has requested the application to restore the DynDID data
(“ApplDescRestoreDynldMemContent ()”), this APl must be called to notify CANdesc that
the DynDID content has been restored and can be used.

Pre-conditions

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context
- any

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

126 / 164

Technical Reference CANdesc

12.6.13.3.3 DescDynDefineDidPowerDown ()

DescDynDefineDidPowerDown
Available since 5.06.09

Is Reentrant []

Is callback []

Prototype

Single Context

void DescDynDefineDidPowerDown (void)
Multi Context

void DescDynDefineDidPowerDown (void)

Parameter

Return code

Functional Description

If the ECU has to be reset or just power off /shutdown, this APl must be called to store the
current DID definitions.

In order to save E2PROM write cycles, the application may perform compare to the
current E2PROM content and decide whether to store the table content or not.

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context

- any

Particularities and Limitations

m Shall be called prior power-down/shutdown execution
= May be called any time to store the current content of the DynDID tables.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

127/ 164

Technical Reference CANdesc

12.6.13.3.4 ApplDescStoreDynldMemContent ()

ApplDescStoreDynldMemContent
Available since 5.06.09

Is Reentrant []

Is callback [X]

Prototype
Single Context

void ApplDescStoreDynIdMemContent (DescDynDidStorageInfo storageInfo)
Multi Context

void ApplDescStoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

Parameter

storageInfo.nvData The pointer to the data to be stored,;
The size (in bytes) of the table;

storageInfo.nvDataSize
The checksum value, calculated by CANdesc, to be stored.

storageInfo.checkSum

Return code

Functional Description

Once this APl is called by CANdesc, the application must trigger a write E2PROM
procedure to store the data given by CANdesc and the checksum value.

In order to save E2PROM write cycles, the application may perform compare to the
current E2PROM content and decide whether to store the table content or not.

Pre-conditions

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context

- any

Particularities and Limitations

m CANdesc does not keep the data pointed by the parameter pointer during the write
operation! The application must mirror the data if needed!

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

128 / 164

Technical Reference CANdesc

12.6.13.3.5 ApplDescRestoreDynldMemContent ()

ApplDescRestoreDynldMemContent
Available since 5.06.09

Is Reentrant []

Is callback [X]

Prototype
Single Context

void ApplDescRestoreDynIdMemContent (DescDynDidStorageInfo storageInfo)
Multi Context

void ApplDescRestoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

storageInfo.nvData The pointer to the data to where the stored data shall be written
The size (in bytes) of the table expected.

storageInfo.nvDataSize

Not used
storageInfo.checkSum

Return code

Functional Description

Once this APl is called by CANdesc, the application must trigger a read E2PROM
procedure to restore the data for CANdesc and the checksum value.

Once the read process has completed, the API “DescDynldMemContentRestored ()’ must
be called to acknowledge the operation status to CANdesc.

Pre-conditions

- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)

Call context
- any

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

129/ 164

Technical Reference CANdesc vector

12.6.14 Memory Access Callbacks
12.6.14.1 ApplDescReadMemoryByAddress()

ApplDescReadMemoryByAddress

Available since 5.06.04
Is Reentrant []
Is callback [X]

Prototype
Any Context

void ApplDescReadMemoryByAddress (DescMsgContext* pMsgContext,
t descMemByAddrInfo* pMemInfo)

Parameter

pMsgContext Refer the section 12.6.4.2 Service MainHandler for details
about this parameter.

pMsgContext—>resData The response buffer pointer

pMsgContext->resDatalen | 1N€ actual response length

pMemInfo->address The address to read from

pMemInfo->length The number of bytes to read

Return code

Functional Description

This callback is called for read memory by address requests. The application has to do
following:

. Perform memory block validation (negative response can be set by calling
DescSetNegResponse()).

. Optional: Perform additional state validations (negative response can be set by
calling DescSetNegResponse()).

. Copy the requested memory contents into the response buffer.

. Set the response data length to the number of bytes copied.

. Confirm that the processing is finished (by calling DescProcessingDone()).

m The read memory by address service is supported.

m Refer to chapter 9.3 Read/Write Memory by Address (SID $23/$3D) (UDS) for more
details of the availability of this API. If you don’t see this API provided in desc.h, then
this feature is not supported for your project.

From DescTask()

m To call this handler periodically, ‘DescStartMemByAddrRepeatedCall’ needs to be used

©2013, Vector Informatik GmbH Version: 3.07.00 130/ 164

based on template version 5.1.0

Technical Reference CANdesc

12.6.14.2 ApplDescWriteMemoryByAddress()

ApplDescWriteMemoryByAddress

Available since 5.06.04
Is Reentrant []
Is callback [X]

Prototype
Any Context

void ApplDescWriteMemoryByAddress (DescMsgContext* pMsgContext,
t descMemByAddrInfo* pMemInfo)

pMsgContext Refer the section 12.6.4.2 Service MainHandler for details
about this parameter.

pMsgContext->regData The pointer to the data to store

pMemInfo->address The address to write to

pMemInfo->length The number of bytes to write

Return code

Functional Description

This callback is called for write memory by address requests. The application has to do
following:

. Perform memory block validation (negative response can be set by calling
DescSetNegResponse()).

. Optional: Perform additional state validations (negative response can be set by
calling DescSetNegResponse()).

o Copy the provided data into the memory area.

. Confirm that the processing is finished (by calling DescProcessingDone()).

m The write memory by address service is supported.

m Refer to chapter 9.3 Read/Write Memory by Address (SID $23/$3D) (UDS) for more
details of the availability of this API. If you don’t see this API provided in desc.h, then
this feature is not supported for your project.

From DescTask()

= To call this handler periodically, ‘DescStartMemByAddrRepeatedCall’ needs to be used

12.6.15 Flash Boot Loader Support

vactor”

CANdesc provides some features to comply with the HIS flash boot loader procedures.

These features are not released for all OEMs so if the below listed APIs are not available
in your CANdesc version, then for the OEM, you currently use CANdesc, does not require,

resp. has another FBL procedures.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

131/ 164

Technical Reference CANdesc

12.6.15.1 DescSendPosRespFBL()

DescSendPosRespFBL

Available since 4.05.00
Is Reentrant []

Is callback []

Prototype
Any Context

void DescSendPosRespFBL (t descFblPosRespType posRespSId)

Parameter

posRespSId One of the following values are allowed:
m kDescSendFblPosRespEcuHardReset
m kDescSendFblPosRespDscDefault.

Return code

Functional Description

The application shall call this function as soon as possible after the initialization of the
CANdesc component is done and the ECU is able to communicate.

Once this function called, CANdesc will try to send the corresponding positive response
as follows:

m kDescSendFblPosRespEcuHardReset — a positive response to EcuHardReset ($51
$01) will be sent.

m kDescSendFblPosRespDscDefault — a positive response to DiagnosticSessionControl
Default session ($50 $01 $P2time $P2Star/10) will be sent.

If CANdesc is currently busy with a new tester request, there will be no response sent by
this API.

Pre-conditions

The FBL positive response feature is supported.
Call context

Any.

Particularities and Limitations
m See 13.8

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

132/ 164

Technical Reference CANdesc

12.6.15.2 ApplDesclnitPosResFblBusinfo()

ApplDesclnitPosResFblBusinfo
Available since 5.07.04

Is Reentrant []

Is callback [X]

Prototype
Any Context

vuint8 ApplDescInitPosResFblBusInfo (t descUsdtNetBus* pBusInfo)

pBusInfo Reference to the bus information structure that will be
initialized here.

pBusInfo->busType The bus driver that will send the response

pBusInfo->comChannel The communication channel on which the response will be

sent. (relevant only on multi channel systems)

pBusInfo->testerId The tester address which will be respond to. (relevant only on
bus systems with source/target addresses)

Return code

kDescOk Operation was successful, the FBL positive response will be
sent.
kDescFailed Operation failed — no FBL positive response will be sent.

Functional Description

This callback is called once the application decided to call the APl DescSendPosRespFBL
to get the concrete addressing information.

The application shall initialize only the parameter described above. The optional ones can
be skipped if not relevant on your system.

The FBL positive response feature is supported.

From DescSendPosRespFBL context.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

133 /164

Technical Reference CANdesc

12.6.16 Debug Interface / Assertion
12.6.16.1 ApplDescFatalError()

ApplDescFatalError

Available since 2.00.00
Is Reentrant []
Is callback [X]

Prototype
Single Context

void ApplDescFatalError (vuint8 errorCode, vuintl6 lineNumber)
Multi Context

void ApplDescFatalError (vuint8 errorCode, vuintl6 lineNumber)

Parameter

errorCode The errorCode is a classification of the assertion. The
errorCodes can be also found in file ‘desc.h’. The errorCodes
are listed below:

1ineNumber A line number of file ‘desc.c’ from which this function is called.

Return code

Functional Description

The CANdesc debug interface is similar to assertion constructof common programming
languages. Assertions are code checks which are written so that they should always
evaluate to true. If an assertion is false, it indicates a possible bug in the program, corrupt
system state or a misoperation of the user-interface.

CANdesc is calling the function ApplDescFatalError() function to indicate a evaluation of
an assertion to false. If this will happen it is recommended to halt the program's execution
immediately. This could be reach by an endless loop in that call-back.

The assertions can be disabled in the GenTool settings. The resource (ROM and runtime)
consumption can be reduced by disabling the assertions.

Error codes

kDescAssertWrongTpTxChannel (0x00):
The wrong TP channel is used — verify the TP interface to the CANdesc component

kDescAssertindexTablelnvalidReference (0x02):
Internal generation failure.

kDescAssertSvcTableUnreachableltem (0x03):
Internal generation failure.

kDescAssertSvcTablelnvalidReference (0x04):
Internal generation failure.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

134 /164

Technical Reference CANdesc

kDescAssertSvcTablelnconsistentNumber (0x05):
Internal generation failure.

kDescAssertMissingMainHandler (0x06):
Internal generation failure.

kDescAssertinvalidContextld (0x08):

Wrong iContext should be used - Check the consistency of the iContext parameter in the
application.

kDescAssertSvcTableIndexOutOfRange (0x09):
Internal generation failure.

kDescAssertSvcinstTableIndexOutOfRange (0x0A):
Internal generation failure.

kDescAssertContextldWasModified (0x0B):

The iContext member of the pMsgContext parameter in the MainHandler functions are
illegal modified — verify the MainHandler functions in the application

kDescAssertProcessingDoneCallAfterResFlushing (OxOE):

DescProcessingDone() is called at least twice for one request — check the call of
DescProcessingDone() in the application.

kDescAssertTooLongSingleFrameResponse (0x0F):

Response lengthof a periodic DID is exceeding the SingleFrame length — check the
response length for periodic DIDs.

kDescAssertApplLackOfConfirmation (0x11):

The time for response processing is too long — verify if the call of DescProcessingDone()
is done in any case.

kDescAssertZeroStateValue (0x13):
The state parameter is zero — check state handling

kDescAssertinvalidContextMode (0x16):
Internal runtime error

kDescAssertUnexpectedWritelntoRingBuffer (0x17):
DescRingBufferWrite() is called without activated ring-buffer

kDescAssertRingBufferWriteExceedsTheResLen (0x18):
DescRingBufferWrite() is called to often

©2013, Vector Informatik GmbH Version: 3.07.00

vactor’

135/164

Technical Reference CANdesc

kDescAssertlllegalUsageOfNegativeResponse (0x1A):
After call of DescProcessingDone() a negative response is set

kDescAssertDiagnosticBufferOverflow (0x1B):
currently not available

kDescAssertFuncReqWoResMayNotUseRingBuffer (0x1C):
It is not possible to use the ring-buffer feature for functional request (KWP only)

kDescAssertSchedulerTimerEventWithoutAnyPID (Ox1E):
Internal runtime error

kDescAssertSchedulerRingBufferlsActivated (Ox1F):
For periodic DIDs it is not possible to use the ring-buffer.

kDescAssertUnknownTpTransmissionType (0x21):
Internal runtime error

kDescAssertlllegalAddRequestCount (0x22):
Internal runtime error

kDescAssertNoSidCanBeReportedinldleMode (0x23):
Call of DescGetSeriveld() while not a user-service is processed

kDescAssertinvalidUsageOfForceRcrRpApi (0x24):
The DescForceRcrRpResponse() function is used illegal.

kDescAssertPidResLenToCddDefNotMatched (0x26):

The response length set by the application do not fit to the response length defined in
CANdela (cdd).

kDescAssertPidResLenToCurrLinearFreeSpace (0x27):
Internal runtime error

kDescAssertMissingDataForTransmission (0x28):
Internal runtime error

kDescAssertSchedulerFreeCellINotFound (0x29):
Internal runtime error

kDescAssertInvalidStateParameterValue (0x2A):
The state parameter value is wrong — check state handling in your application

©2013, Vector Informatik GmbH Version: 3.07.00

vactor’

136/ 164

Technical Reference CANdesc vector

kDescAssertNoFreelCNChannel (0x2B):
Internal runtime error

kDescAssertinvalidDesclCNClient (0x2C):
Internal runtime error

kDescAssertNoFreeMsgContext (0x2D):
Internal runtime error

kDescAssertUnExpectedContextWithResponse (0x2E):
A response will be sent out of a wrong context.

kDescAssertlllegalCallOfRingBufferCancel (0x2F):

The API DescRingBufferCancel() has been called for a response that is not using the ring-
buffer concept (e.g. DescRingBufferStart() was not called).

kDescNetAssertWronglsoTpRxChannel (0x40):
The wrong TP channel is used — verify the TP interface to the CANdesc component

kDescNetAssertWronglsoTpTxChannel (0x41):
The wrong TP channel is used — verify the TP interface to the CANdesc component

kDescNetAssertWrongBusType (0x42):
The wrong bus type is used — verify the TP interface to the CANdesc component

kDescAssertDesclcnlllegalTargetPointer (0x50):
Internal runtime assertion

At least on type of assertions are activated
Form ISR or task level. The interrupts might be disabled

m After a call of this function the system is not stable anymore. It can not be guaranteed
that this component or the whole system is still working in correct manner.

12.6.17 “Spontaneous Response” transmission

To implement the service $86 (Respone On Event) it is necessary to transmit a message
without a previous request. If the same CAN ID have to be used for this reponse as for the
diagnostics response, CANdesc provides an API to trigger the transmission.

©2013, Vector Informatik GmbH Version: 3.07.00 137/ 164

Technical Reference CANdesc

12.6.17.1 DescApplSendSpontaneousResponse()

DescApplSendSpontaneousResponse
Available since 6.09.00

Is Reentrant []
Is callback []

Prototype
Any Context

DescBool DescApplSendSpontaneocusResponse (DescMsg resData,
DescMsglen reslen,

t descUsdtNetBus* pBusInfo)

resData Pointer to an application buffer with response data (including
posive response header).

resLen Number of bytes to be sent (up to 4095 bytes).

pBusInfo Reference to the bus information structure that will be initialized
here.

pBusInfo->busType The bus driver that will send the response.

pBusInfo->comChannel | 1he communication channel on which the response will be sent.
(relevant only on multi channel systems).

pBusInfo->testerId The tester address which will be respond to (relevant only on
bus systems with source/target addresses).

Return code
kDescTrue Operation was successful, the response will be sent.

kDescFalse Operation failed — no response will be sent.

Functional Description

Calling this function the application can force CANdesc to send immediately a
spontaneous response.

If CANdesc is currently busy with a tester request, there will be no response sent by this
APl and kDescFalse will be returned.

If this API returns kDescTrue, the application shall wait for the

ApplDescSpontaneousResponseConfirmation() prior initiating a new spontaneous
transmission.

Pre-conditions

CANdesc was configured to use this option (enabled in the GENtool). Only possible to
configure if Service 0x86 is contained in the cdd.

Call context
Task or interrupt.

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

138/ 164

Technical Reference CANdesc

12.6.17.2 ApplDescSpontaneousResponseConfirmation()

ApplDescSpontaneousResponseConfirmation

Available since 6.09.00
Is callback [X]

Prototype
Single Context

void ApplDescSpontaneousResponseConfirmation (vuint8 status)
Multi Context

void ApplDescSpontaneousResponseConfirmation (vuint8 iContext, wvuint8 status)

Parameter
iContext Will be always “kDescPrimContext”.
status If the transmission was successful, the parameter value will be

kDescOk. Otherwise — kDescFailed.
Return code

Functional Description

Once the spontaneous response has been successfully triggered (ref.
DescApplSendSpontaneousResponse()), this function will be called in any case. The
transmission status is reported by the status parameter.

Pre-conditions

Only available if the APl DescApplSendSpontaneousResponse() is available.

Call context

CAN Driver TX-ISR = TP Confirmation - this function

Particularities and Limitations

m Be aware of time consuming implementation for this function (interrupt call context).

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

139/ 164

Technical Reference CANdesc

12.6.18 Generic Processing Notifications

12.6.18.1 ApplDescManufacturerindication

ApplDescManufacturerindication

Available since 6.13.00
Is callback [X]

Prototype
Single Context

void ApplDescManufacturerIndication (vuint8 sid,

vuint8* data,
vuintl6 length,
vuint8 reqType,

t descUsdtNetBus* pBusInfo)

Multi Context

Parameter

iContext

sid

data

length

reqglype

pBusInfo

Return code

Functional Description

©2013, Vector Informatik GmbH

void ApplDescManufacturerIndication (vuint8 iContext,

This function is called right before CANdesc starts the processing of a received request.

vuint8 sid,
vuint8* data,
vuintl6 length,
vuint8 reqType,

t descUsdtNetBus* pBusInfo)

The current request context location
(used only as a handle - DO NOT MODIFY).

The service identifier of the received service request.

Pointer to the first byte of the request data (without service
identifier byte).

Length of the request data (without service identifier byte)

The current request addressing method. Could be either
,kDescFuncReq’ or ,kDescPhysReq’ (bitmapped).

The current request communication information (i.e. driver type
(CAN, MOST, FlexRay, etc.), addressing information,
communication channel number, tester address (if applicable)
etc.

Version: 3.07.00

based on template version 5.1.0

vactor”

140/ 164

Technical Reference CANdesc vector

Pre-conditions

Only available if the feature “Manufacturer Notification Support” is activated and CANdesc
UDS2012 is used.

Call context

From DescTask()

Particularities and Limitations

12.6.18.2 ApplDescManufacturerConfirmation

ApplDescManufacturerConfirmation

Available since 6.13.00
Is callback [X]

Prototype
Single Context

void ApplDescManufacturerConfirmation (vuint8 status)
Multi Context

void ApplDescManufacturerConfirmation (vuint8 iContext,

vuint8 status)

iContext The current request context location
(used only as a handle - DO NOT MODIFY).
status kDescPostHandlerStateOk

The positive response was transmitted successfully

kDescPostHandlerStateNegResSent
It was a negative response

kDescPostHandlerStateTxFailed
A transmission error occurred

Return code

Functional Description

This function is called after the processing of a request has been finished, a response has
been sent (or sending has failed) and all service PostHandlers were called.

Pre-conditions

Only available if the feature “Manufacturer Notification Support” is activated and CANdesc
UDS2012 is used.

Call context
From DescTask ()

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00 141/ 164

based on template version 5.1.0

Technical Reference CANdesc

12.6.18.3 ApplDescSupplierindication

ApplDescSupplierindication

Available since 6.13.00
Is callback [X]

Prototype
Single Context

void ApplDescSupplierIndication (vuint8 sid,
vuint8* data,
vuintl6 length,
vuint8 reqType,
t descUsdtNetBus* pBusInfo)

Multi Context

void ApplDescSupplierIndication (vuint8 iContext,
vuint8 sid,
vuint8* data,
vuintl6 length,
vuint8 reqType,
t descUsdtNetBus* pBusInfo)

iContext The current request context location
(used only as a handle - DO NOT MODIFY).

sid The service identifier of the received service request.

data Pointer to the first byte of the request data (without service
identifier byte).

length Length of the request data (without service identifier byte)

reqType The current request addressing method. Could be either
,kDescFuncReq’ or kDescPhysReq’ (bitmapped).

pBusInfo The current request communication information (i.e. driver type
(CAN, MOST, FlexRay, etc.), addressing information,
communication channel number, tester address (if applicable)
etc.

Functional Description

This function is called during the processing of a request, after CANdesc has verified that
the requested service is allowed in the active session and security state.

©2013, Vector Informatik GmbH Version: 3.07.00

based on template version 5.1.0

vactor”

142/ 164

Technical Reference CANdesc vector

Pre-conditions

Only available if the feature “Supplier Notification Support” is activated and CANdesc
UDS2012 is used.

Call context

From DescTask()

Particularities and Limitations

12.6.18.4 ApplDescSupplierConfirmation

ApplDescSupplierConfirmation

Available since 6.13.00
Is callback X

Prototype
Single Context

void ApplDescSupplierConfirmation (vuint8 status)
Multi Context

void ApplDescSupplierConfirmation (vuint8 iContext,

vuint8 status)

iContext The current request context location
(used only as a handle - DO NOT MODIFY).
status kDescPostHandlerStateOk

The positive response was transmitted successfully

kDescPostHandlerStateNegResSent
It was a negative response

kDescPostHandlerStateTxFailed
A transmission error occurred

Return code

Functional Description

This function is called after the processing of a request has been finished, a response has
been sent (or sending has failed) and all service PostHandlers were called. It is called
before ApplDescManufacturerConfirmation().

Pre-conditions

Only available if the feature “Supplier Notification Support” is activated and CANdesc
UDS2012 is used.

Call context
From DescTask ()

Particularities and Limitations

©2013, Vector Informatik GmbH Version: 3.07.00 143/ 164

based on template version 5.1.0

Technical Reference CANdesc vector

13 How To...

13.1 ...implement a protocol service MainHandler

//1. Read ProtocolService
// - dynamic length
// - PIDs

void DESC API CALLBACK TYPE ApplDescManiOnTimerEvent_storeEvent (DescMsgContext*
pMsgContext)
{
/* Check the length */
if (pMsgContext->regDatalen > 2)
{
/* Check the sub-parameters */
vuintl6 param;
/* Compose one parameter combining the HiByte and the LoByte in this order*/
param = DescMakel6Bit (pMsgContext->regData[0], pMsgContext->reqgDatall]):;

/* Dispatch the parameter */
switch (param)
{
case OxFFFE:
if (pMsgContext->regDatalLen !'= OxFFFF)
{
/* Write some data (skip the parameter offsets 0 und 1) */
pMsgContext->resData[2] = DescGetLoByte (0x1234);
pMsgContext->resData[3] = DescGetHiByte (0x1234);
/* Set the response length */
pMsgContext->resDatalen = 4;
}
else
{
DescSetNegResponse (pMsgContext->iContext, kDescNrcInvalidFormat) ;
}
break;
default:
/* unknown parameter */
DescSetNegResponse (pMsgContext->iContext, kDescNrcInvalidFormat) ;
}
}
else
{
DescSetNegResponse (pMsgContext-iContext, kDescNrcInvalidFormat) ;
}
/* In this case we did everything in the main-handler */
DescProcessingDone (pMsgContext->iContext) ;

//2. Read ProtocolService
// - dynamic length
// - sub-function

©2013, Vector Informatik GmbH Version: 3.07.00 144/ 164

Technical Reference CANdesc vector

void DESC API CALLBACK TYPE ApplDescManiOnTimerEvent storeEvent (DescMsgContext*
pMsgContext)
{
/* Check the length */
if (pMsgContext->regDatalen > 1)
{
/* Dispatch the sub-function */
switch (pMsgContext->regData[0])
{
case OxFF:
if (pMsgContext->regDatalen != OxFFFF)
i
/* Format check ok: write some data (skip the parameter) */
pMsgContext->resData[l] = DescGetLoByte (0x1234);
pMsgContext->resData[2] = DescGetHiByte (0x1234);
/* Set the response length */
/* Hint: if the response length wasn't set, zero value is assumed! */
pMsgContext->resDatalen = 3;
}
else
{
/* Wrong sub-parameter format */
DescSetNegResponse (pMsgContext->iContext, kDescNrcInvalidFormat) ;
}
break;
default:
/* Unknown sub-function */
DescSetNegResponse (pMsgContext->iContext,
kDescNrcSubfunctionNotSupported) ;
}
}
else
{
DescSetNegResponse (pMsgContext-iContext, kDescNrcInvalidFormat) ;
}
/* In this case we did everything in the main-handler */
DescProcessingDone (pMsgContext->iContext) ;

}

//3. Write ProtocolService
// - dynamic length
// - PIDs

void DESC API CALLBACK TYPE ApplDescManiOnTimerEvent_ storeEvent (DescMsgContext*

pMsgContext)

{
/* Check the sub-parameters */
vuintl6 param;

/* Check the length */
if (pMsgContext->regDatalen > 2)

{

/* Compose one parameter combining the HiByte and the LoByte in this order
*/
param = DescMakel6Bit (pMsgContext->regData[0], pMsgContext->reqgDatall]);

/* Dispatch the parameter */

switch (param)

{

©2013, Vector Informatik GmbH Version: 3.07.00 145/ 164

Technical Reference CANdesc vector

case OxFFFE:
if (pMsgContext->regDatalen != OxFFFF)
i
/* Copy from the request data to your application */
/* Use the data pointed by: pMsgContext->regDatal[Z2],
pMsgContext->reqData[3], etc.*/
}
else
{
DescSetNegResponse (pMsgContext->iContext, kDescNrcInvalidFormat) ;

}
break;
default:

/* unknown parameter */
DescSetNegResponse (pMsgContext->iContext, kDescNrcRequestOutOfRange) ;

}
}
else

{

DescSetNegResponse (pMsgContext-iContext, kDescNrcInvalidFormat) ;

}
/* In this case we did everything in the main-handler */
/* Hint: if the response length wasn't set, zero value is assumed! */

DescProcessingDone (pMsgContext->iContext) ;

}

//4. Write ProtocolService
// - dynamic length
// — Sub-function

void DESC API CALLBACK TYPE ApplDescManiOnTimerEvent_ storeEvent (DescMsgContext*

pMsgContext)

{
/* Check the sub-parameters */
vuintl6 param;

/* Check the length */
if (pMsgContext->regDatalen > 2)

{

/* Compose one parameter combining the HiByte and the LoByte in this order*/
param = DescMakel6Bit (pMsgContext->regData[0], pMsgContext->regDatall]);

/* Dispatch the parameter */
switch (param)
{
case OxFFFE:
if (pMsgContext->regDatalen != OxFFFF)
{
/* Copy from the request data to your application */
/* Use the data pointed by: pMsgContext->regDatal[Z2],
pMsgContext->reqData[3], etc.*/
}
else
{
DescSetNegResponse (pMsgContext->iContext, kDescNrcInvalidFormat) ;

}
break;
default:
/* unknown sub-function /
DescSetNegResponse (pMsgContext->iContext,

©2013, Vector Informatik GmbH Version: 3.07.00 146 / 164

Technical Reference CANdesc vector

kDescNrcSubfunctionNotSupported) ;

}
}
else
{
DescSetNegResponse (pMsgContext-iContext, kDescNrcInvalidFormat) ;
}
/* In this case we did everything in the main-handler */
/* Hint: if the response length wasn't set, zero value 1s assumed! */
DescProcessingDone (pMsgContext->iContext) ;

13.2 ...implement a service MainHandler

//5. Read Service
// - dynamic length
// - sub-function/PID

void DESC API CALLBACK TYPE ApplDescManiOnTimerEvent_storeEvent (DescMsgContext*
pMsgContext)

{

/* Check the length */
if (pMsgContext->regDatalen != OxFFFF)
{
/* Format check ok: write some data */
pMsgContext->resData[0] = DescGetLoByte (0x1234);
pMsgContext->resData[l] = DescGetHiByte (0x1234);
/* Set the response length */
/* Hint: if the response length wasn't set, zero value is assumed! */
pMsgContext->resDatalen = 2;
}
else
{
/* Wrong sub-function format */
DescSetNegResponse (pMsgContext->iContext, kDescNrcInvalidFormat) ;

}

/* In this case we did everything in the main-handler */
DescProcessingDone (pMsgContext->iContext) ;

//6. Read Service
// — static length
// - sub-function/PID

void DESC API CALLBACK TYPE ApplDescManiOnTimerEvent_ storeEvent (DescMsgContext*
pMsgContext)

{

©2013, Vector Informatik GmbH Version: 3.07.00

/* Format check ok: write some data */

pMsgContext->resData[0] = DescGetLoByte (0x1234);
pMsgContext->resData[l] = DescGetHiByte (0x1234);

/* Set the response length */

/* Hint: if the response length wasn't set, zero value is assumed! */
pMsgContext->resDatalen = 2;

/* In this case we did everything in the main-handler */

147/ 164

Technical Reference CANdesc vector

DescProcessingDone (pMsgContext->iContext) ;

}

//7. Write Service
// - dynamic length
// - sub-function/PID

void DESC_API CALLBACK TYPE ApplDescManiOnTimerEvent_storeEvent (DescMsgContext*
pMsgContext)
{
/* Check the length */
if (pMsgContext->regDatalen != OxFFFF)
{
/* Format check ok: write some data */
/* Copy from the request data to your application */
/* Use the data pointed by: pMsgContext->reqgData([0],
pMsgContext->reqgDatal[l], etc.*/
}
else
{
/* Wrong sub-function format */
DescSetNegResponse (pMsgContext->iContext, kDescNrcInvalidFormat) ;

}

/* In this case we did everything in the main-handler */
/* Hint: if the response length wasn't set, zero value is assumed! */
DescProcessingDone (pMsgContext->iContext) ;

//8. Write Service
// - static length
// - sub-function/PID

void DESC API CALLBACK TYPE ApplDescManiOnTimerEvent_ storeEvent (DescMsgContext*

pMsgContext)
{
/* Copy from the request data to your application */
/* Use the data pointed by: pMsgContext->reqgData[0], pMsgContext->reqDatall],
etc.*/

/* In this case we did everything in the main-handler */
/* Hint: if the response length wasn't set, zero value is assumed! */
DescProcessingDone (pMsgContext->iContext) ;

13.3 ...implement a Signal Handler

//1. ReadSignalHandler
// = length <= 4Byte
// Limitations: No DescProcessingDone () or DescSetNegResponse () allowed.

vuintx DESC API CALLBACK TYPE ApplDescGetTemp (void)

{
/* Return directly the signal value */
return (vuintx)OxFFFE;

©2013, Vector Informatik GmbH Version: 3.07.00 148 / 164

based on template version 5.1.0

Technical Reference CANdesc vector

//2. ReadSignalHandler
// - length > 4Byte
// Limitations: No DescProcessingDone () or DescSetNegResponse () allowed.

DescMsgLen DESC API CALLBACK TYPE ApplDescGetTemp (DescMsg tgt)
{
/* Copy the signal data into the buffer pointed by "tgt".*/
/* Return the amount of written bytes */
return 0O;

//3. WriteSignalHandler
// - length <= 4Byte
// Limitations: No DescProcessingDone () or DescSetNegResponse () allowed.

void DESC API CALLBACK TYPE ApplDescGetTemp (vuintx data)
{

/* "data'" contains the signal value as-is from the request.
Copy 1t into your application. */

//4. ReadSignalHandler
// - length > 4Byte
// Limitations: No DescProcessingDone () or DescSetNegResponse () allowed.

DescMsgLen DESC API CALLBACK TYPE ApplDescGetTemp (DescMsg src)

{
/* Copy the signal data from the buffer pointed by "src".*/
/* Return the amount of copied bytes */
return 0;

13.4 ...implement a Packet Handler

//1. ReadPacketHandler
// Limitations: No DescProcessingDone () or DescSetNegResponse () allowed.

void DESC API CALLBACK TYPE ApplDescGetTemp (DescMsg pMsg)

{
/* Copy the signal value into the "pMsg" buffer. */

pPMsg[0] = DescGetLoByte (0x1234) ;
pMsg[l] = DescGetLoByte (0x1234);
}
13.5 ...implement a state transition function

//1. StateTransitionNotification
// Limitations: No DescProcessingDone () or DescSetNegResponse () allowed.

©2013, Vector Informatik GmbH Version: 3.07.00 149/ 164

based on template version 5.1.0

Technical Reference CANdesc vector

void DESC API CALLBACK TYPE ApplDescOnTransitionSession (DescStateGroup
formerState, DescStateGroup newState)
{

/* You are just notified that this state group has performed a transition from
* "formerState" to the "newState". */
}

©2013, Vector Informatik GmbH

Version: 3.07.00 150/ 164

Technical Reference CANdesc

13.6 ...work with the ring-buffer mechanism
13.6.1 with asynchronous write

vactor”

TPMC Desc Appl_MainHandler Appl_MainHandler_2 EEPROM

Appl_PostHandler

Driver
l call

T -Analyze and validate request

. It is not possible to write data as in
Writeresponse length | ihe standard way if a ring-buffer will

P— be used (standard way is, to write to
DescMsgContext->ResData)

DescRingBuﬁe(StanO

DescRingBufferWrite(* dataPtr, dataLéhgth X

Enough data are
stored in the
ring-buffer to start
the transmission

L Now - it is possibel to
write data to the ring-buffer

DescRingBufferWrite(* dataPtr, datalLength)

DescRingBufferWrite(* dataPtr, dataLength)

StartTransmission

Not enough free
bytes to write
new data

TP reads
asynchronous the
data out of the
ring-buffer

DescRingBufferGetFreeSpace i

retum countOfFreeBytesnRingBuffer

\

TpCopyToCan

DescRingBufferGetFreeSpace

return countOfFreeBytesInRingBuffer

DescRingBufferWrite(* dataPtr, datalLength)

TpCopyToCan

DescRingBufferGetProgress

return currentBytePosition

FinishTransmission

L Call of Senice Post Handler

//1. Read Service (with asynchronous Ring-Buffer)
// - static length
// - sub-function/PID

vuint8 g iContext;

©2013, Vector Informatik GmbH Version: 3.07.00

151 /164

Technical Reference CANdesc vector

void DESC API CALLBACK TYPE ApplDescReadDTC (DescMsgContext* pMsgContext)
{

vuint8 1lData;
/* Format check already done by CANdesc */

/* Analysis of request has to done by ECU application */

/* Set the response length */
pMsgContext->resDatalen = 16;

/* Fill the first data */
1Data = 5;

/* Store iContext for further interaction with CANdesc */
g _iContext = pMsgContext->iContext;
/* check only on services with sub-function (e.g. 0x19) */
if (pMsgContext=->msgAddInfo.suppPosRes != 0)
{
/* since no response required - skip further processing */
DescProcessingDone (pMsgContext->iContext) ;

}

else

{
/* Now we have to set CANdesc into the Ring-Buffer mode */
DescRingBufferStart (pMsgContext->iContext) ;
/* Now it 1s possible to write into the Ring-Buffer */
DescRingBufferWrite (pMsgContext->iContext, &lData, 1);

/* Now trigger e.g. an EEPROM read event */

EEPROM _TASK (xyz)

{
vuint8 1DTC[3];

/* Wait for EEPROM event */
/* EEPROM event is finished with reading */
{

DescRingBufferWrite (g iContext, &1DTC, 3);
/* Now trigger next EEPROM reading */
}

©2013, Vector Informatik GmbH Version: 3.07.00 152/ 164

based on template version 5.1.0

Technical Reference CANdesc

13.6.2 with synchronous write

vactor”

De#c Appl_MainHandler Appl_MainHandler_2 EEPROM Appl_PostHandler
Driver
J call
Analyze|and \alidate request
write Tesponse length
P—
DescRingBufferStart
DescRingBufferWrite(* dataPtr, datalLength)
DescStartRepeatedSeniceCall(&AppIMainHandler_2)
| Within this function

Activate the L call the data can be

multiple senice written synchronous.

call togeta

periodic call from

CANdesc

call GetEEPROMData
DescRingBufferWrite(* dataPtr, dataLength)
I call l
DescRingBufferGetFreeSpace
return countOfFreeBytesInRingBuffer
call
DescRingBufferGetFreeSpace
return countOfFreeBytesInRingBuffer
GetEEPROMData
DescRingBufferWrite(* dataPtr, datalLength)]

j PostHandler T

//2. Read Service (with synchronous Ring-Buffer)
// - static length
// - sub-function/PID

extern void ApplDescReadDTC_AddOn (DescMsgContext* pMsgContext) ;

void DESC API CALLBACK TYPE ApplDescReadDTC (DescMsgContext* pMsgContext)

{

vuint8 1lData;
/* Format check already done by CANdesc */

©2013, Vector Informatik GmbH

Version: 3.07.00

153 /164

Technical Reference CANdesc vector

/* Analysis of request has to done by ECU application */

/* Set the response length */
pMsgContext->resDatalen = 16;

/* Fill the first data */
1Data = 5;

/* check only on services with sub-function (e.g. 0x19) */
if (pMsgContext->msgAddInfo.suppPosRes != 0)
{
/* since no response required - skip further processing */
DescProcessingDone (pMsgContext->iContext) ;
}
else

{
/* Now we have to set CANdesc into the Ring-Buffer mode */
DescRingBufferStart (pMsgContext->iContext) ;
/* Now it 1s possible to write into the Ring-Buffer */
DescRingBufferWrite (pMsgContext->iContext, &lData, 1);

/* Use RepeatedSeriveCall feature to poll e.g. EEPROM driver */
DescStartRepeatedServiceCall (pMsgContext->iContext, &ApplDescReadDTC AddOn) ;

}
}

void ApplDescReadDTC_AddOn (DescMsgContext* pMsgContext)

{
vuint8 1DTC[3];
DescMsgLen freeSpace;
/* Check if enough space is free in ring-buffer */
freeSpace = DescRingBufferGetFreeSpace () ;
if (freeSpace >= 3)
/* try to read from EEPROM */
{

/* Success - result is in 1DTC */
DescRingBufferWrite (pMsgContext->iContext, &1DTC, 3);

}
else

{

/* nothing to do, wait for next MainHandler call, ring-buffer is full */

}

13.7 ...prevent the ECU going to sleep while diagnostic is active

Most car manufactures have the requirement to keep the ECU alive while the diagnostic
layer is active; including a pending request or a non-default session is currently active.

This requirement is handled by CANdesc for some car manufactures (see OEM specific
TechnicalReference_CANdesc document for details)

The following code example shows all necessary steps to keep the ECU alive while
diagnostic jobs are running (e.g. non-default session):

{
DescContextActivity lActivity;

©2013, Vector Informatik GmbH Version: 3.07.00 154 /164

Technical Reference CANdesc vector

DescStateGroup 1lState;

1Acitvity = DescGetActivityState();
1State = DescGetStateSession();

/* check for a pending request or a non-default session */

if (((lState & kDescStateSessionDefault) == 0) ||
(lActivity != kDescContextIdle))

{

/* Force to stay alive */

}

else
{
/* Ready for sleeping */
}
}

13.8 ...send a positive response without request after FBL flash job

According to some specifications the application has to send a positive response either to
“diagnostic session control — default session” or “ECU reset — hard reset” after a
successful flash job without a request. The Flash Boot Loader has to set a flag (reset
response flag) in RAM or EEPROM which has to be evaluated by the application at
startup. Depending on its value the application has to call the CANdesc function
DescSendPosRespFBL() with the appropriate response ID.

CANdesc provides the API DescSendPosRespFBL() for this purpose.

Due to bus communication is necessary to send the positive response; some limitations
have to be handled by the application:

1) Bus communication is to be requested by the application

2) If bus communication is possible, the application has to call DescSendPosRespFBL().
CANdescBasic will send the positive response.

3) The application will be called (ApplDescinitPosResFblBusinfo()) to provide the concrete
addressing information of the response.

4) Bus communication can be released by the application.

13.9 ...enforce CANdesc to use ANSI C instead of hardware optimized bit type

CANdesc uses per default the bit-type definition provided by the CANdriver, since it is
selected as optimal for the concrete CPU. On this way the CANdesc ROM and RAM
resource consumption is kept as low as possible.

Due to the complexity of some CANdesc data structures there can be problems on certain
compilers with special bit-structure compiler options.

If you encounter such problems either at compile or at run-time, you can turn the ANSIC C
bit-type support in CANdesc on. To do that, just add a user configuration file in GENy with
the following content:

#define DESC _USE ANSI C BIT TYPE

©2013, Vector Informatik GmbH Version: 3.07.00 155/ 164

Technical Reference CANdesc vector

13.10 ...configure Extended Addressing

If Extended Addressing is used as TP Addressing mode some additional settings have to
be done. “DescCheckTA” has to be set for the “Target Address Message Filter’ in GENy.

|: TP Clazz Specific Options
Lowwest Functional Address 07
Highest Functional Address Qa0
Muttiple ECL Mumbers |:| *
Precopy Message Filter
Target Address Message Fiter |Desu:Eheu:kT.f-‘-l
Crwen ECU Mumber 44

Figure 13-1 GENy TP configuration

Additional a user configuration file has to be used to configure the functional target
address. An example for the content of the user configuration file is given below.

#define kDescOemExtAddrFuncTargetAddr OxFE

13.11 ...use Multiple Addressing

This chapter is a short summary of additional information that the application has to
provide for CANdesc if the Tp addressing mode is Multiple Addressing.

In the case that a positive response has to be send after FBL flash job of the application,
please assure that the correct addressing information are provided in the callback
ApplDesclnitPosResFblBusinfo().

Furthermore, the “Rx Get Buffer’ and “Rx Indication” functions have to be redirected to the
application if one of the Tp Addressing modes is Normal Addressing. This can be done in
the GENy configuration of the TP, a callback name different from the one that is
implemented in CANdesc has to be entered.

©2013, Vector Informatik GmbH Version: 3.07.00 156/ 164

Technical Reference CANdesc

Mumber of Tx Channels

Rz Get Buffer

R Inclication

Rz Error Indication

Fx Single Frame Indication

Fx First Frame Indication

R Consecutive Frame Indication
R Copy from CARN

R Flowy Control Frame Transmitted
Tx Confirmation

Tx Error Indication

Tx Motification

Tx CAM Mezzage transmitted

T Flowy Control Frame received
Tx Copy to CAN

Tx Delay finished

Configurable Options Diag
|: TP Connection Group
Mumber of Ry Channels 1

E

DizpatcherD esci etB uffer
DizpatcherD ezcPhy:Reqlind

DescR=Erorlndication

®
E
®
E

®

DeszcConfirmation

DezcT=Emorlndication

E
®
E

DescCopyToCAM

E

Figure 13-2 GENy TP callbacks

vactor’

The callbacks have to be implemented in the application. In the Get Buffer function the
CAN Id has to be set for the FC in the case of Normal Addressing,

/* Example:

Tx/Rx channel. */

TP_MEMORY MODEL DATA canuint8* DispatcherDescGetBuffer (canuint8 tpChannel,

canuintl6 datLen)

{

TP _MEMORY MODEL DATA canuint8* retPtr

retPtr = DescGetBuffer (tpChannel,

if (retPtr != V_NULL)

{

if ((TpRxGetAddressingFormat (tpChannel)

{

/* kApplNormalAddressingTxId, have to defined by the application*/
TpRxSetTransmitID (tpChannel,

return retPtr;

}

©2013, Vector Informatik GmbH

V_NULL;

datLen) ;

== kTpNormalAddressing))

kApplNormalAddressingTxId) ;

Version: 3.07.00

A configuration with only CANdesc Tp connections and only one Tp

157 / 164

Technical Reference CANdesc vector

The response ID for Normal Addressing has to be set in the Indication function. The
response Id has to be set after the call of DescPhysReqInd().

/* Example: A configuration with only CANdesc Tp connections and only one Tp
Tx/Rx channel. */
void DispatcherDescPhysReqgInd (canuint8 tpChannel, canuintlé datLen)

{
vuint8 addressingType = (TpRxGetAddressingFormat (tpChannel));

DescPhysReqgInd (tpChannel, datLen);

/*Set CAN IDs for the Response*/

if (addressingType == kTpNormalAddressing)

{
/* kApplNormalAddressingTxId and kApplNormalAddressingPhysRxId, have to
defined by the application*/
TpTxSetChannelID (0 /*tpTxChannel*/, kApplNormalAddressingTxId,
kApplNormalAddressingPhysRxId) ;
/* tpTxChannel = 0 is only possible because only one Tx Channel is
configured.*/

13.12 ...use “Dynamic Normal Addressing Multi TP” with multiple tester

This chapter is a short summary of additional information that the application has to
provide for CANdesc if the Tp addressing mode is “Dynamic Normal Addressing Multi TP”
with more than one tester.

In the case that a positive response has to be send after FBL flash job of the application,
please assure that the correct addressing information are provided in the callback
ApplDesclnitPosResFblBusinfo().

Furthermore, the “Rx Get Buffer” function has to be redirected to the application. This can
be done in the GENy configuration of the TP, a callback name different from the one that is
implemented in CANdesc has to be entered.

©2013, Vector Informatik GmbH Version: 3.07.00 158 /164

Technical Reference CANdesc

|: TP Connection Group

Mame Diag

Mumber of Rx Channels 1°

Mumber of Tx Channels 1°

Roc Get Buffer DigpatcherDescGet Buffer
R Indication DescPhy=Reqind

R Error Indication DescRxEmorindication
Rx Single Frame Indication *

R First Frame Indication =

Rx Consecutive Frame Indication =

R Copy from CAN -

R Flow Control Frame Transmitted =

Tx Confirmation DescConfimation

Tx Error Indication Desc TxEmorindication
T Motification -

Tx CAN Message transmitted -

Tx Flow Control Frame received =

Tx Copy to CAN DescCopyTaCAN

The “Get Buffer” function of the functional

application too.

Figure 13-3 GENy TP callbacks (physical addressing)

connection has to be

|: TP Functional Connection Group

Get Buffer (mandatory)

I DigpatcherDescGet FuncBuffer

Indication (mandatory)

-
DescFuncReqind

Copy from CAN

-

Figure 13-4 GENy TP callbacks (functional addressing)

vactor”

redirected to the

The callbacks have to be implemented in the application. The received CAN ID has to be
mapped to the corresponding transmit CAN ID and the TP connection number has to be

set in the xxxGetBuffer callback:

©2013, Vector Informatik GmbH

Version: 3.07.00

based on template version 5.1.0

159/ 164

Technical Reference CANdesc vector

TP_MEMORY MODEL DATA canuint8* DispatcherDescGetBuffer (canuint8 tpChannel,
canuintl6 datLen)
{

TP _MEMORY MODEL DATA canuint8* retPtr = V_NULL;

switch (TpRxGetChannellID (tpChannel))

{

case kDispatcherRxDiagPhysCanId:
TpRxSetTransmitID (tpChannel, kDispatcherTxDiagPhysCanId) ;
TpRxSetConnectionNumber (tpChannel, kDescDiagConnection) ;
retPtr = DescGetBuffer (tpChannel, datLen);
break;

case kDispatcherRxDiagAddPhysCanId:
TpRxSetTransmitID (tpChannel, kDispatcherTxDiagAddPhysCanId) ;
TpRxSetConnectionNumber (tpChannel, kDescDiagAddConnection);
retPtr = DescGetBuffer (tpChannel, datlen);
break;

default:

’

}

return retPtr;

The receiced CAN ID has to be mapped to the corresponding transmit CAN ID in the
xxxGetFuncBuffer callback. Furthermore it is important, that the physical Rx ID is set for
the response and not the functional one. This CAN ID is used to recognize the FC of the
tester in case of a multiframe response:

TP _MEMORY MODEL DATA canuint8* DispatcherDescGetFuncBuffer (vuintl6é datalLength)

{
TP_MEMORY MODEL DATA canuint8* retPtr = V NULL;

switch (TpFuncGetReceiveCanID())

{

case kDispatcherRxDiagFunc:
TpFuncSetTransmitCanID (kDispatcherTxDiagPhysCanId) ;
TpFuncSetReceiveCanID (kDispatcherRxDiagPhysCanId) ;
retPtr = DescGetFuncBuffer (datalength);
break;

case kDispatcherRxDiagAddFunc:
TpFuncSetTransmitCanID (kDispatcherTxDiagAddPhysCanId) ;
TpFuncSetReceiveCanID (kDispatcherRxDiagAddPhysCanId) ;
retPtr = DescGetFuncBuffer (datalength) ;
break;

default:

}

return retPtr;

©2013, Vector Informatik GmbH Version: 3.07.00 160/ 164

Technical Reference CANdesc vector

The code examples above are for 2 testers, in the example are some defines used that
have to be provided by the application corresponding to the configuration.

Define Description

kDispatcherRxDiagPhysCanId Physical request CAN ID of the first tester
kDispatcherRxDiagFuncCanId Functional request CAN ID of the first tester
kDispatcherTxDiagPhysCanId Response CAN ID of the first tester

kDispatcherRxDiagAddPhysCanId | Physical request CAN ID of the second tester

kDispatcherRxDiagAddFuncCanld | Functional request CAN ID of the second tester

kDispatcherTxDiagAddPhysCanld | Response CAN ID of the second tester

kDispatcherTxDiagTpChannel Transmit Tp Channel of CANdesc. If only one
Tp Channel is used, it is has to be set to zero.

©2013, Vector Informatik GmbH Version: 3.07.00 161/ 164

based on template version 5.1.0

Technical Reference CANdesc vector

14 Related documents

Abbreviation File Name Description
/KWP2000/ Keyword 2000 protocol
ITPMC/ User manual of the multi-connection transport layer

module. The transport layer is implemented
according to /ISO 15765/

/ISO 15765/ This I1SO standard describes diagnostics and
diagnostics on CAN.

Note: If no file name is given, the document is not provided by Vector.

©2013, Vector Informatik GmbH Version: 3.07.00 162/ 164

based on template version 5.1.0

Technical Reference CANdesc

15 Glossary

CANdb

CAN database by Vector which is used by Vector tools.

CANdesc CAN diagnostics embedded software component

CDD CANdela Diagnostic Database

CF Consecutive Frame (transport protocol frame)

CCL Communication Control Layer

DBC CAN database format of the Vector company, which is used by the
GENTtool to gather information about the ECUs in the network, their
communication relations, message definitions, signals of
messages, network related information (e.g. manufacturer type,
network management type, etc.).

ECU Electronic Control Unit

FBL Flash Boot Loader

KWP 2000 Keyword Protocol 2000

OSEK German abbreviation, “Offene Systeme und deren Schnittstellen
fur die Elektronik im Kraftfahrzeug”, means “open systems and the
corresponding interfaces for automotive electronics”

RCR-RP Request Correctly Received — Response Pending

SF Single Frame

SID Service ldentifier

SPRMIB Suppress Positive Response Message Indication Bit

TP Transport Protocol

UDS Unified Diagnostic Services

VSG Vehicle System Group

©2013, Vector Informatik GmbH

Version: 3.07.00

vactor’

163 /164

Technical Reference CANdesc

16 Contact

Visit our website for more information on

> News

\

Products

\Y

Demo software

\%

Support

\%

Training data

\

Addresses

www.vector.com

©2013, Vector Informatik GmbH

Version: 3.07.00

vactor’

164 / 164

	1 History
	2 Introduction
	3 Documents this one refers to…
	4 Architecture Overview
	4.1 CANdesc – Internal processing
	4.1.1 Diagnostic protocol
	4.1.2 How does this flow actually work?

	4.2 Application interface flow
	4.2.1 Session- and CommunicationControl

	5 Advanced Configuration
	5.1 Configure DBC attributes for diagnostics

	6 CANdesc Configuration in GENy
	6.1 Step One – Importing an ECU Diagnostic Description
	6.2 Step Two – ECU Diagnostic Configuration in GENy
	6.2.1 Global CANdesc Settings
	6.2.1.1 Generic Processing Notifications (UDS2012)

	6.2.2 Service Specific Settings
	6.2.2.1 Generic Service Settings
	6.2.2.2 Predefined (implemented) Services in CANdesc
	6.2.2.3 Signal Access Enabled Services

	6.2.3 Timing Settings
	6.2.4 Security Access Settings (UDS2006)
	6.2.5 Security Access Settings (UDS2012)
	6.2.6 Scheduler Settings

	7 CANdescBasic Configuration in GENy
	7.1 Global CANdescBasic Settings
	7.2 Service Specific Settings
	7.3 Timing Settings
	7.4 Diagnostic State Configuration

	8 Multi Identity Support
	8.1 Single Identity Mode
	8.1.1.1 Configuration in CANdela
	8.1.1.2 Configuration in GENy

	8.2 VSG Mode
	8.2.1 Implementation Limitations
	8.2.2 Configuration in CANdela
	8.2.3 Configuration in CANdela
	8.2.4 Configuration in GENy

	8.3 Multi Identity Mode

	9 Diagnostic Service Implementation Specifics
	9.1 ReadDataByIdentifier (SID $22)
	9.1.1 Limitations of the service
	9.1.2 Single PID mode
	9.1.2.1 Sending a positive response using linear buffer access
	9.1.2.2 Sending a positive response using ring buffer access
	9.1.2.3 Sending a negative response

	9.1.3 Multiple PID mode
	9.1.3.1 Pure linear buffer configuration
	9.1.3.1.1 Sending a positive response
	9.1.3.1.2 Sending a negative response

	9.1.3.2 Ring buffer active configuration
	9.1.3.2.1 Sending a positive response
	9.1.3.2.2 Sending a negative response
	9.1.3.2.3 PostHandler execution rule

	9.2 DynamicallyDefineDataIdentifier (SID $2C) (UDS)
	9.2.1 Feature set
	9.2.2 API Functions
	9.2.3 Sequence Charts

	9.3 Read/Write Memory by Address (SID $23/$3D) (UDS)
	9.3.1 Tasks performed by CANdesc
	9.3.2 Task to be performed by the Application
	9.3.3 Repeated service calls

	10 Generic Processing Notifications
	10.1 Using dynamically defined data Identifier

	11 Busy Repeat Responder Support (UDS2006 and UDS2012)
	11.1 Configuration in GENy

	12 CANdesc API
	12.1 API Categories
	12.1.1 Single Context
	12.1.2 Multiple Context (only CANdesc)

	12.2 Data Types
	12.3 Global Variables
	12.4 Constants
	12.4.1 Component Version

	12.5 Macros
	12.5.1 Data exchange
	12.5.1.1 Splitting 16 bit data
	12.5.1.2 Splitting 32 bit data
	12.5.1.3 Assembling 16 bit data
	12.5.1.4 Assembling 32 bit data

	12.6 Functions
	12.6.1 Administrative Functions
	12.6.1.1 DescInitPowerOn()
	12.6.1.2 DescInit()
	12.6.1.3 DescTask()
	12.6.1.4 DescStateTask()
	12.6.1.5 DescTimerTask()
	12.6.1.6 DescGetActivityState()

	12.6.2 Multi Variant Configuration Functions
	12.6.2.1 DescInitConfigVariant()
	12.6.2.2 DescGetConfigVariant()

	12.6.3 Service Functions
	12.6.3.1 DescSetNegResponse()
	12.6.3.2 DescProcessingDone()

	12.6.4 Service callback functions
	12.6.4.1 Service PreHandler
	12.6.4.2 Service MainHandler
	12.6.4.3 Service PostHandler

	12.6.5 User (Unknown) Service Handling
	12.6.5.1 How it works
	12.6.5.2 ApplDescCheckUserService()
	12.6.5.3 DescGetServiceId()
	12.6.5.4 Generic User Service MainHandler
	12.6.5.5 Generic User Service PostHandler

	12.6.6 Session Handling
	12.6.6.1 ApplDescCheckSessionTransition()
	12.6.6.2 DescSessionTransitionChecked()
	12.6.6.3 DescIsSuppressPosResBitSet ()
	12.6.6.4 ApplDescOnTransitionSession()
	12.6.6.5 DescSetStateSession()
	12.6.6.6 DescGetStateSession()
	12.6.6.7 DescGetSessionIdOfSessionState

	12.6.7 CommunicationControl Handling
	12.6.7.1 ApplDescCheckCommCtrl()
	12.6.7.2 DescCommCtrlChecked()

	12.6.8 Periodic call of ‘Service MainHandler’
	12.6.8.1 DescStartRepeatedServiceCall()
	12.6.8.2 DescStartMemByAddrRepeatedCall()

	12.6.9 Ring Buffer Mechanism
	12.6.9.1 DescRingBufferStart()
	12.6.9.2 DescRingBufferWrite()
	12.6.9.3 DescRingBufferCancel()
	12.6.9.4 DescRingBufferGetFreeSpace()
	12.6.9.5 DescRingBufferGetProgress()

	12.6.10 Signal Interface of CANdesc
	12.6.10.1 ApplDesc<Signal-Handler>()
	12.6.10.2 Configuration of direct signal access

	12.6.11 State Handling (CANdesc only)
	12.6.11.1 DescGetState<StateGroup>()
	12.6.11.2 DescSetState<StateGroup>()
	12.6.11.3 ApplDescOnTransition«StateGroup»()

	12.6.12 Force “Response Correctly Received - Response Pending” transmission
	12.6.12.1 DescForceRcrRpResponse()
	12.6.12.2 ApplDescRcrRpConfirmation()

	12.6.13 DynamicallyDefineDataIdentifier ($2C) (UDS) functions
	12.6.13.1 DescMayCallStateTaskAgain()
	12.6.13.2 ApplDescCheckDynDidMemoryArea()
	12.6.13.3 Non-volatile memory support
	12.6.13.3.1 DescDynDefineDidPowerUp()
	12.6.13.3.2 DescDynIdMemContentRestored ()
	12.6.13.3.3 DescDynDefineDidPowerDown ()
	12.6.13.3.4 ApplDescStoreDynIdMemContent ()
	12.6.13.3.5 ApplDescRestoreDynIdMemContent ()

	12.6.14 Memory Access Callbacks
	12.6.14.1 ApplDescReadMemoryByAddress()
	12.6.14.2 ApplDescWriteMemoryByAddress()

	12.6.15 Flash Boot Loader Support
	12.6.15.1 DescSendPosRespFBL()
	12.6.15.2 ApplDescInitPosResFblBusInfo()

	12.6.16 Debug Interface / Assertion
	12.6.16.1 ApplDescFatalError()

	12.6.17 “Spontaneous Response” transmission
	12.6.17.1 DescApplSendSpontaneousResponse()
	12.6.17.2 ApplDescSpontaneousResponseConfirmation()

	12.6.18 Generic Processing Notifications
	12.6.18.1 ApplDescManufacturerIndication
	12.6.18.2 ApplDescManufacturerConfirmation
	12.6.18.3 ApplDescSupplierIndication
	12.6.18.4 ApplDescSupplierConfirmation

	13 How To…
	13.1 …implement a protocol service MainHandler
	13.2 …implement a service MainHandler
	13.3 …implement a Signal Handler
	13.4 …implement a Packet Handler
	13.5 …implement a state transition function
	13.6 …work with the ring-buffer mechanism
	13.6.1 with asynchronous write
	13.6.2 with synchronous write

	13.7 …prevent the ECU going to sleep while diagnostic is active
	13.8 …send a positive response without request after FBL flash job
	13.9 …enforce CANdesc to use ANSI C instead of hardware optimized bit type
	13.10 …configure Extended Addressing
	13.11 …use Multiple Addressing
	13.12 …use “Dynamic Normal Addressing Multi TP” with multiple tester

	14 Related documents
	15 Glossary
	16 Contact

