/ Application Report
I ’-{‘IE)S(’;A‘SUMENTS SPNA106A—-January 2012
Initialization of Hercules™ ARM® Cortex ™M-R4F
Microcontrollers

Sunil Oak

ABSTRACT

This application report provides a brief overview and initialization procedure of the TMS570LS31x series
and the RM4x series of microcontrollers in the Hercules family. "Hercules MCU" will be used henceforth in
this document to refer to any part in these series of microcontrollers.

The document also shows code fragments from source files that are generated using the HALCoGen tool.
All code constructs used in this document are defined in header files also generated by the same utility.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/spnal06.

w N

A WODN PR

A

Contents
2] 0o Q=T - oo 2
Standard Initialization Sequence for Hercules MiCroCONtrollerseeviiiiiieriiiieriraaeeseaaneesaaanneess 3
2] (] 1T 0T 15

DY Tot I] (o o] QD T= T | = T o 2
(0] (o] g I=To [=T g o I {o gl 21 (o Ted Xq D I= o = 1o S P 2
e I 2] Yo Q5 = T |- oo 6
VIM Interrupt AddreSS MeEMOTY MaP . uuuueeeeiiiitesiaisesiaase s saaaas s s ssaant e s saannrssssantasssannnnsssnnns 14

List of Tables

Clock Sources on HercUlES MiCIrOCONTIOIEIS v e uueieesseeeeeennieeeeeseeeennnnnrsrseeenennnssrrrrsresnnnnnsnnnnrrees 7
Clock Domains on Hercules MIiCIrOCONIIOI IS .. u ..ttt eettsiiie st e et ttssaaeasssestenannsaassssersnnnssnssssrenns 10

Hercules is a trademark of Texas Instruments.

Cortex is a trademark of ARM Limited.

ARM is a registered trademark of ARM Limited.

All other trademarks are the property of their respective owners.

SPNA106A—-January 2012 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers 1
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/lit/zip/spna106
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

Block Diagram www.ti.com

1 Block Diagram

Section 1 shows a high-level block diagram of the superset TMS570LS31x microcontroller. For the actual
block diagram relevant for any derivative of the TMS570LS series or for the RM4x series of
microcontrollers, see the device-specific data sheet.

3m 64K 1 256K ETM-R4 RTP
Flash 64K RAM (CPU Trace) (RAM Trace)

with with
ECC
64K ECC
Dual Cortex-R4F DMA POM DMM HTU1 HTU2
CPUs in Lockstep 7 7 7 0 7

H | Switched Centrol Resource ” Switched Centrol Resource |

Main Cross Bar: Arbitration and :Prioritization Control

¢ & &
64 KB Flash CRC Peripheral Central Resource Bridge
for EEPROM
Emulation
with ECC MibADC1|| MibADC2|| DCAN1 || DCAN2 || DCAN3

N2HET1|| 12C LIN MibSPIx SPI2

SCI
B (] [

Figure 1. Device Block Diagram

The block diagram includes a color-coded representation of the individual core-power domains
implemented on the microcontroller (see Figure 2). These power domains can be individually turned ON or
OFF during initialization as per the application requirements.

Core/RAM Core RAM
#1 [42 I #1
| | #3| | #2

[w4 T #3
I #5

Figure 2. Color Legend for Block Diagram

2 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers SPNA106A—-January 2012
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

I3 TEXAS
INSTRUMENTS
www.ti.com Standard Initialization Sequence for Hercules Microcontrollers
2 Standard Initialization Sequence for Hercules Microcontrollers

A basic sequence for initialization and configuration of the key features on a Hercules MCU is summarized

below and many steps are detailed in the following sections. The source code example accompanying this

application report demonstrates many of the suggested steps. Some parts of the initialization sequence
are not mandatory. Applications that are non-safety-critical can choose to not use the error correction
coding (ECC) feature for Flash and RAM accesses, for example. Each application must also have its
specific exception handling scheme: reset handler, abort handler, etc. The code generated using

HALCoGen includes template handling routines for each exception. These routines need to be modified as

required by the application.

1. Enable the floating-point unit (FPU) inside the Cortex-R4F CPU (Section 2.1).

2. Initialize the CPU registers and FPU registers, including stack pointers (Section 2.2).

3. Enable the flash interface module's response to an ECC error indicated by the CPU on accesses to
flash (Section 2.3).

4. Enable the CPU's Event Bus export mechanism (Section 2.4).

5. Enable the CPU's Single-Error-Correction Double-Error-Detection (SECDED) logic for accesses to
Flash memory (CPU's ATCM interface) (Section 2.5).

6. Handle the cause of reset to determine whether or not to continue with the start-up sequence
(Section 2.6)

7. Check if any ESM group3 error was indicated during power-up. If any ESM group3 error occurred
during the power-up, it is not safe to continue code execution and the microcontroller initialization
process can be stopped at this point. The subsequent steps in this sequence assume that there was
no ESM group3 error during power-up.

8. Configure PLL control registers with the largest value for the last-stage of the dividers (R-dividers)
(Section 2.7).

9. Enable the Phased-Locked Loops (PLLSs) (Section 2.8).

10. Run the eFuse controller start-up checks and start the self-test on the eFuse controller SECDED logic
(Section 2.9).

11. Release the peripherals from reset and enable clocks to all peripherals (Section 2.10).

12. Set up the device-level multiplexing options as well as the input/output (I1/O) multiplexing.

13. Wait for the eFuse controller ECC logic self-test to complete and check the results.

14. Set up Flash module for the required wait states and pipelined mode (Section 2.11).

15. Set up Flash bank and pump power modes (Section 2.12).

16. Trim the LPO (Section 2.13).

17. Run the self-test on the SECDED logic embedded inside the Flash module (Section 2.14).

18. Wait for main PLL output to become valid.

19. Map the device clock domains to the desired clock sources (Section 2.15).

20. Reduce the values of the R-dividers in steps to attain the target PLL output frequency for both PLL1
and PLL2.

21. Run a diagnostic check on the CPU self-test controller (Section 2.16). A CPU reset is asserted upon
completion of the CPU self-test. Therefore, the initialization steps leading up to the reset handler will
be repeated.

22. Run the built-in self-test for the CPU (LBIST) (Section 2.17). A CPU reset is asserted upon completion
of the CPU self-test. Therefore, the initialization steps leading up to the reset handler will be repeated.

23. Run a diagnostic check on the CPU compare module (CCM-R4F) (Section 2.18).

24. Run a diagnostic check on the memory self-test controller (Section 2.19).

25. Start a self-test on the CPU RAM using the programmable built-in self-test (PBIST) controller and wait
for this self-test to complete and pass (Section 2.20).

26. Initialize the CPU RAM using the system module hardware initialization mechanism so that the ECC
region for the CPU RAM is also initialized (Section 2.21).

27. Enable the CPU's Single-Error-Correction Double-Error-Detection (SECDED) logic for accesses to
CPU RAM memory (CPU's BOTCM and B1TCM interfaces) (Section 2.22).

SPNA106A—-January 2012 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers 3

Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

Standard Initialization Sequence for Hercules Microcontrollers www.ti.com

28.
29.

30.

31.
32.

33.
34.
35.
36.
37.
38.

39.
40.
41.
42.
43,
44,
45,
46.

47.
48.
49.
50.
51.
52.

53.
54.

55.
56.

57.

Start a self-test on all on-chip dual-port SRAMs using the PBIST controller (Section 2.23).

Run the self-test on the CPU's SECDED logic for accesses to main data RAM (BOTCM and B1TCM)
(Section 2.24).

Run the self-test on the CPU's SECDED logic for accesses to the main Flash memory (ATCM)
(Section 2.25).

Wait for self-test to complete and pass on all on-chip dual-port SRAMs.

Start a self-test on all on-chip single-port SRAMs excluding the CPU RAM using the PBIST controller
(Section 2.26).

Wait for self-test to complete and pass on all on-chip single-port SRAMs.

Start auto-initialization for all other on-chip SRAMs (Section 2.27).

Check if the auto-initialization process for all RAMs is completed; wait here if it has not completed.
Check the parity error detection mechanism for all peripheral memories (Section 2.28).

Enable the CPU’s dedicated vectored interrupt controller (VIC) port (Section 2.29).

Program all interrupt service routine addresses in the vectored interrupt manager (VIM) memory
(Section 2.30).

Configure IRQ / FIQ interrupt priorities for all interrupt channels (Section 2.30.1).

Enable the desired interrupts (IRQ and/or FIQ) inside the CPU (Section 2.31).

Enable the desired interrupts in the VIM control registers (Section 2.30.2).

Set up the application responses to inputs to the error signaling module (ESM) (Section 2.32).
Initialize copy table, global variables, and constructors (Section 2.33).

Verify that the dual-clock-comparator (DCC) module can actually detect and flag a frequency error.
Configure the DCC module to continuously monitor the PLL output.

Verify that a memory protection unit (MPU) violation for all bus masters is flagged as an error to the
ESM.

Run a background check on entire Flash using CRC and DMA.

Run the offset error calibration routine for the ADC.

Run a self-test on the analog-to-digital converter (ADC) analog input channels.
Check 1/0 loop-back for all peripherals.

Set up the MPU for the bus masters.

Set up the digital windowed watchdog (DWWD) module service window size and the module response
on a violation (reset or NMI).

Configure the N2HET1-to-N2HET2 monitoring functionality.

Configure desired access permissions for peripherals using the Peripheral Central Resource (PCR)
controller registers.

Configure external safety companion, e.g., TI TPS6538X, for online diagnostic operation.

Set up the real-time interrupt (RTI) module for generating periodic interrupts as required by the
application.

Call the main application (Section 2.35).

4 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers SPNA106A—-January 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

I

TEXAS

INSTRUMENTS

www.ti.com Standard Initialization Sequence for Hercules Microcontrollers

2.1

2.2

2.3

2.4

Enable Floating-Point Coprocessor (FPU)

The floating-point coprocessor is disabled upon a CPU reset and must be enabled if the application
requires floating-point calculations. If a floating-point instruction is executed with the FPU disabled, an
undefined instruction exception is generated.

Initialize Cortex-R4F Registers

The Hercules series of microcontrollers include dual Cortex-R4F CPUs running in a lock-step operation
mode. A core compare module (CCM-R4) compares the output signals from each R4F CPU. Any
difference in the two CPUSs’ outputs is flagged as a fault of a high-severity level. The CPU internal
registers are not guaranteed to power up in the same state for both the CPUs. The CPU pushes the
internal registers on to the stack on a function call, which could lead to the detection of a core compare
error. Therefore, the CPU internal core registers need to be initialized to a predefined state before any
function call is made.

The CPU’s call-return stack consists of a 4-entry circular buffer. When the CPU pre-fetch unit (PFU)
detects a taken procedure call instruction, the PFU pushes the return address onto the call-return stack.
The instructions that the PFU recognizes as procedure calls are, in both the ARM and Thumb instruction
sets:

— BL immediate
— BLX immediate
— BLX Rm

When the return stack detects a taken return instruction, the PFU issues an instruction fetch from the
location at the top of the return stack, and pops the return stack. The instructions that the PFU recognizes
as procedure returns are, in both the ARM and Thumb instruction sets:

LDMIA Rn{1}, {..,pc}
POP {..,pc}

LDMIB Rn{1}, {..,pc}
LDMDA Rn{!}, {..,pc}
LDMDB Rn{!}, {..,pc}
LDR pc, [sp], #4

BX Rm

e r bbb

Enable Response to ECC Errors in Flash Interface Module

The Flash module has a Flash Error Detection and Correction Control Register 1 (FEDACCTRL1) at
address OxFFF87008. This register controls the ECC functionality implemented inside the Flash module,
including support for the SECDED logic inside the Cortex-R4F CPU. The bits 3-0 of this register make up
the EDACEN field. EDACEN is configured to 0x5 by default. The application must configure EDACEN to
OxA in order to enable the flash module's support for the CPU's SECDED logic.

Enable the Cortex-R4F CPU’s Event Signaling Mechanism

The Cortex-R4F CPU has a dedicated event bus that is used to indicate that an event had occurred. This
event signaling is disabled upon reset and must be enabled. The Flash module and the RAM module
interfaces capture the ECC error events signaled by the CPU. This allows the application to further debug
the exact address, which caused the ECC error.

The CPU event signaling can be enabled by clearing the “X” bit of the performance monitoring unit’'s
“Performance monitor control register, c9”.

SPNA106A—-January 2012 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers 5
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

Standard Initialization Sequence for Hercules Microcontrollers www.ti.com

2.5

2.6

2.7

27.1

Enable the Cortex-R4F CPU’s ECC Checking for ATCM Interface

The CPU has internal ECC logic that protects all CPU accesses to the ATCM (Flash) interface. This logic
is not used by default and must be enabled by setting the ATCMPCEN bit of the System control
coprocessor’s Auxiliary control register, c1.

Handle the Cause of Reset

Each application has different levels of tolerance for different reset conditions. A typical reset handler is
presented in the accompanying example code project, which identifies all the causes of a reset condition
on the Hercules MCUs.

Configure PLLs

The Hercules microcontrollers contain a frequency-modulated phase-locked loop (FMPLL) macro that
allows the input oscillator frequency to be multiplied to a higher frequency than can be conveniently
achieved with an external resonator or crystal. Additionally, the FMPLL allows the flexibility to generate
many different frequency options from a fixed crystal or resonator.

The FMPLL allows the application to superimpose a “modulation frequency” signal on the selected base
frequency signal output from the FMPLL. This reduces the electromagnetic energy of the output signal by
spreading it across a controlled frequency range around the base frequency. This mode is disabled by
default, and the application can enable it in applications sensitive to noise emissions.

The Hercules microcontrollers also contain a second non-modulating PLL macro. This PLL#2 can be
independently configured to generate a second high-frequency clock source for specific uses, e.g.,
FlexRay communication clock source of 80 MHz.

FMPLL Block Diagram
Figure 3 shows a high-level block diagram of the FMPLL macro.

OSCIN [R INTCLK VCOCLK /OD post_ODCLK R PLLCLK

M to 164 PLL Mto/8 M to 132

foLcik = (fosoin / NR) * NF /(OD * R)
INF
/1 to /1256

OSCIN [/NR2 INTCLK2 VCOCLK2 | jop2 post_ODCLK2 IR2 PLL2CLK

/M to /64 PLL#2 Nto/8 M to /32

INF2 foLocik = (foscin / NR2) * NF2 / (OD2 * R2)
/1 to 1256

Figure 3. FMPLL Block Diagram

The parameters foscin, fhost oncik @nd fucy are data sheet specifications. To identify the min/max limits on
these frequencies, see the device-specific data sheet.

NOTE: The FMPLL takes (127 + 1024*NR) oscillator cycles to acquire lock to the target frequency,
hence it is recommended to configure the FMPLL(s) and enable them as soon as possible in
the device initialization.

6

Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers SPNA106A—-January 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

www.ti.com

Standard Initialization Sequence for Hercules Microcontrollers

2.7.2 FMPLL Configuration

PLL1 is configured using two control registers, PLL Control 1 Register (PLLCTL1) and PLL Control 2
Register (PLLCTLZ2), located within the System module on the Hercules microcontrollers.

PLL2 is configured using a single PLL Control 3 Register (PLLCTL3) in the System module.

2.8 Enable Clock Sources

2.8.1 Available Clock Sources on Hercules Microcontrollers

The Hercules microcontrollers support seven different clock sources, as listed in Table 1.

Table 1. Clock Sources on Hercules Microcontrollers

Clock
Source
Number Clock Source Name Description

This is the primary oscillator, typically driven by an external resonator or crystal. This

0 OSCIN is the only available input to the FMPLL and the FMPLL2 macros. The OSCIN
frequency must be between 5 MHz and 20 MHz.
This is the output of the FMPLL, which is generated using the OSCIN as the input
clock. The FMPLL output clock frequency must not exceed the maximum device

1 FMPLL#1 output frequency specified in the device-specific data sheet. The FMPLL features a
modulation mode where a modulation frequency is superimposed on the FMPLL
output signal.

5 Not implemented No clock signal is connecte_d to source #2. This clock source must not be enabled or
chosen for any clock domain.
External clock input #1. This clock source must only be enabled if there is an actual

3 EXTCLKIN1 external clock source connected to the identified device terminal for EXTCLKIN1. For
more information, see the device-specific data sheet.

4 LE LPO This is the low-frequency output of the internal reference oscillator. The LF LPO is
typically an 80 KHz signal, and is generally used for low-power mode use cases.
This is the high-frequency output of the internal reference oscillator. The HF LPO is

5 HF LPO typically a 10 MHz signal, and is used as a reference clock for monitoring the main
oscillator.
This is the output of the secondary FMPLL, which is generated using the OSCIN as

6 FMPLL#2 output the input clock. The FMPLL output clock frequency must not exceed the maximum
device frequency specified in the device-specific data sheet.
External clock input #2. This clock source must only be enabled if there is an actual

7 EXTCLKIN2 external clock source connected to the identified device terminal for EXTCLKINZ2. For

more information, see the device-specific data sheet.

2.8.2 Control Registers for Enabling and Disabling Clock Sources

There are seven available clock sources on the Hercules microcontrollers:
» Clock sources 0, 4 and 5 are enabled, while clock sources 1, 3, 6 and 7 are disabled upon any system

reset.

* Clock source 2 is not implemented and must not be enabled in the application.

» Each bit of the system module Clock Source Disable Register (CSDIS) controls the clock source of the
same number: bit 0 controls clock source 0, bit 1 controls clock source 1, and so on.

* There are also dedicated Clock Source Disable Set (CSDISSET) and Clock Source Disable Clear
(CSDISCLR) registers to allow the application to avoid using read-modify-write operations.

» Setting any bit commands, the corresponding clock source to be disabled.

— The clock source can only be disabled once there is no clock domain or secondary clock source
(FMPLL, FMPLL#2) using the clock source to be disabled.

SPNA106A—-January 2012
Submit Documentation Feedback

Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers

Copyright © 2012, Texas Instruments Incorporated

7

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

Standard Initialization Sequence for Hercules Microcontrollers www.ti.com

2.8.3

2.9

2.10

2.11

Example Clock Source Configuration

syst emREGL- >CSDI SCLR = 0x00000000U

0x00000001U // Enabl e clock source
0x00000002U // Enabl e cl ock source
0x00000010U // Enabl e clock source
0x00000020U // Enabl e cl ock source

0x00000040U; // Enable clock source

- — 1
o 01~ O

The above configuration enables clock sources 0, 1, 4, 5, and 6.

Of the clock sources that are enabled, number 0, 4 and 5 are enabled by default and will have become
valid by the time the processor is released from reset upon a power-up. These are the main oscillator and
the two outputs from the internal reference oscillator.

Clock source 1 and 6 are the two PLL outputs. The FMPLL as well as the FMPLL#2 have a defined
start-up time, and their outputs are not available for use until this time. The application must wait for the
valid status flags for these clock sources to be set before using the PLL outputs for any clock domain. The
example initialization sequence makes use of this PLL lock time to perform all initialization actions that
don'e have to be done at the maximum operating frequency chosen for the application.

Run Self-Test on the eFuse Controller SECDED Logic

Electrically programmable fuses (eFuses) are used to configure the part after de-assertion of power-on
reset (nPORRST). The eFuse values are read and loaded into internal registers as part of the
power-on-reset sequence. This is called the eFuse autoload. The eFuse values are protected with
single-bit error-correction, double-bit error-detection (SECDED) codes. These fuses are programmed
during the initial factory test of the device. The eFuse controller is designed so that the state of the eFuses
cannot be changed once the device is packaged.

For safety critical systems, it is important for the application to check the status of the eFuse controller
after a device reset. For more details on eFuse controller errors and the application sequence to check for
these errors, see the eFuse Controller chapter of the device-specific technical reference manual.

Release Reset and Clocks to Peripherals

The peripherals are kept under reset, and need to be explicitly brought out of reset by the application. This
can be done by setting the peripheral enable (PENA) bit of the Clock Control Register (CLKCNTL).

The clocks to the peripheral modules are also disabled upon any system reset and need to be explicitly
enabled by the application. This can be done by setting the bits corresponding to the peripheral select
guadrant occupied by the peripheral module in the Peripheral Central Resource (PCR) Control Registers
for clearing the power down states of peripheral modules (Peripheral Power-Down Clear Register [0:3]
(PSPWRDWNCLRKX)). For information on the peripheral select quadrants for each peripheral, see the
device-specific data sheet.

Configure Flash Access

The Flash memory on the Hercules series microcontrollers is a non-volatile electrically erasable and
programmable memory.

The Hercules microcontrollers contain a digital module that manages all accesses to the Flash memory. A
Flash access can be completed without any wait states required for bus master clock speeds up to 45
MHz. If the bus clock is faster than 45 MHz, then any Flash access requires the appropriate number of
wait states depending on the bus clock speed. The Hercules series microcontrollers support clock speeds
up to 180 MHz. For the actual maximum allowed speed and the number of corresponding address and
data wait states, see the device-specific data sheet.

Suppose that the application requires a CPU clock speed of 180 MHz. This requires 1 address wait state
and 3 data wait states for any access to the Flash memory. These wait states need to be configured in the
Flash module registers.

Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers SPNA106A—-January 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

I

TEXAS
INSTRUMENTS

www.ti.com Standard Initialization Sequence for Hercules Microcontrollers

2.12

2.13

The Flash module also features a pipelined mode of operation. When this mode is enabled, the module
reads 128 bits from the Flash memory and holds them in buffers that the CPU can read from without any
wait state. The CPU can read 32 or 64 bits of instructions or data from the pipeline buffers.

The Flash Read Control Register (FRDCNTL) inside the Flash module controls the wait states and the
pipeline mode.

The Hercules MCUs also have a separate Flash bank (bank #7) that is dedicated for data storage. This
bank can be used to emulate an EEPROM. Accesses to this Flash bank are configured via a separate
EEPROM Emulation Configuration Register (EEPROM_CONFIG) in the Flash module. A write operation
to the EEPROM_CONFIG register must first be enabled by configuring the Flash State Machine Write
Enable Control Register (FSM_WR_ENA).

Once the access to the FSM control registers is enabled, the read access to the Flash bank 7 can be
configured.

Configure Flash Bank and Pump Power Modes
The Flash banks and pump used on the Hercules series microcontrollers support three different operating
modes to optimize power consumption.
+ Active mode
— Flash bank sense amplifiers and sense reference are enabled
— All circuits of Flash charge pump are enabled
« Standby mode (only for Flash banks)
— Flash bank sense reference is enabled but sense amplifiers are disabled
* Sleep Mode
— Flash bank sense amplifiers and sense reference are disabled
— All circuits of Flash charge pump are disabled
The Flash banks and charge pump are in the active state by default and after any system reset. The Flash
module allows the application to configure “fall back” power states for the Flash banks and charge pump.

The Flash banks and pump automatically switch the power mode to the selected fall back state when
there is no access to the Flash banks detected within a user-configurable time.

The Flash module also contains special timers to automatically sequence the Flash banks and pump
between the active and the selected fall-back states. A read access to any Flash bank that is in a
non-active power state “wakes up” both the selected bank and the charge pump to active power state.
Programming and erase operations are only allowed on banks in active state.

The Flash Bank Access Control Register (FBAC) controls the Flash banks’ power states.
The Flash Pump Access Control Registers (FPAC1, FPAC2) control the Flash pump's power states.

Configure Oscillator Monitor

The HF LPO clock source is used as a reference clock for monitoring the main oscillator. A failure is
detected if the oscillator frequency falls outside the range: {furpo / 4, furpo*4}-

The HF LPO frequency varies significantly over process corners as well as with changes in the core
supply (VCC) and temperature. The Hercules microcontrollers allow the application to trim the HF LPO
such that the application can choose the operating frequency point of the HF LPO. This in turn determines
the valid range of oscillator frequency.

During device test, a trim value is written into the one-time programmable section of the Flash memory
(OTP), address 0xF008_01B4. Bits 31:16 of this OTP word contain a 16-bit value that may be
programmed into Low Power Oscillator Monitor Control Register (LPOMONCTL) in order to initialize the
trim for HF LPO.

SPNA106A—-January 2012 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers 9
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

Standard Initialization Sequence for Hercules Microcontrollers www.ti.com

Alternatively, the application can use the dual-clock compare (DCC) module to determine the trim setting
for the HF LPO. The DCC module allows for comparison of two clock frequencies. Once the HF LPO is
determined to be in-range with the initial HFTRIM setting from the OTP, the crystal oscillator may be used
as a reference against which the HF LPO and LF LPO may be further adjusted. For more details, see the
device-specific technical reference manual.

2.14 Run Self-Test on the Flash Module SECDED Logic

The Flash module reads the “reset configuration vector” from address OxF0080140 in the Tl OTP region of
Flash bank 0. This is a 64-bit value that is used to configure the device power domains, etc. The Flash
module has built-in SECDED logic to correct any single-bit error in this vector or detect and flag and
double-bit error in this vector. If a double-bit error is detected during this read from the OTP, an ESM
group3 error condition is flagged and the nERROR signal is asserted low. If a single-bit error is detected
during the read from the OTP, this error is corrected by the SECDED logic — no flag is set and no error
signal is sent to the ESM.

There are dedicated locations within the TI OTP sector of Flash bank 0 that are programmed to have
single-bit and double-bit errors. Specifically, a 32-bit or 64-bit read from the address 0OxFO0803FO0 results
in a single-bit error indication, and a 32-bit or 64-bit read from the address OxFO0803F8 results in a
double-bit error indication. These locations can be read by the application to ensure that the Flash
interface module is capable of detecting single-bit and double-bit errors upon reads from the OTP.

2.15 Clock Domains

All further initializatio steps are now required to be performed at the max operating frequency for the
application. The application must now wait for the PLLs to lock to their target frequencies, and then map
the device clock domains to the desired clock sources. There are multiple clock domains on the Hercules
microcontrollers to ease the configuration and controllability of the different modules using these clock
domains (see Table 2).

Table 2. Clock Domains on Hercules Microcontrollers

Domain Name Clock Name Comments

. GCLK controls all the CPU sub-systems, including the floating point
CPU clock domain GCLK unit (FPU), and the memory protection unit (MPU)

HCLK shares the same clock source as GCLK, and is always the
same frequency as HCLK.

VCLK_sys is used for the system modules such as VIM, ESM, SYS,
System peripheral clock domain VCLK_sys etc. VCLK_sys is divided down from HCLK by a programmable
divider from 1 to 16.

VCLK is the primary peripheral clock, and is synchronous with
VCLK_sys. VCLK2 is a secondary peripheral clock and is reserved
for use by the enhanced timer module (NHET) and the associated
transfer unit (HTU). VCLK2 is also divided down from HCLK by a

Peripheral clock domains VCLK, VCLK2, VCLK3 programmable divider from 1 to 16. f,c « must be an integer multiple
of fycka, fuclke Must be an integer multiple of fyc . VCLK3 is also
divided down from HCLK by a programmable divider from 1 to 16,
and is used for the Ethernet and EMIF modules on the TMS570LS3x
microcontrollers.

System bus clock domain HCLK

These clock domains are reserved for use by special communication
modules that have strict jitter constraints. The protocols for these
VCLKA1, VCLKA2, and communication modules (e.g., CAN, FlexRay, Ethernet) do not allow
VCLKA4 modulated clocks to be used for the baud rate generation. The
asynchronous clocks allow the clock sources for the baud clocks to
be decoupled from the GCLK, HCLK and VCLKXx clock domains.

This clock is used for generating the periodic interrupts by the RTI
module.

Asynchronous clock domains

Real-time Interrupt clock domains ~ RTI1CLK

10 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers SPNA106A—-January 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

www.ti.com Standard Initialization Sequence for Hercules Microcontrollers

2.151 Mapping Clock Domains to Clock Sources

The system module on the Hercules microcontrollers contains registers that allow the clock domains to be
mapped to any of the available clock sources.

The clock source for the GCLK, HCLK , and VCLKx domains is selected by the GCLK, HCLK, VCLK, and
VCLK2 Source Register (GHVSRC).

The clock sources for the VCLKA1 and VCLKA2 domains are selected via the Peripheral Asynchronous
Clock Source Register (VCLKASRC).

The clock sources for the VCLKA3 and VCLKA4 domains are selected via the Peripheral Asynchronous
Clock Configuration 1 Register (VCLKACONL1).

The clock source for the RTI1ICLK domain is selected via the RTI Clock Source Register (RCLKSRC).

2.15.2 Example Clock Domain Mapping

syst enREGL- >CGHVSRC (0U << 24U /1 Use main oscillator as wake up source for GHV CLK

(0U << 16U) /1 Use main oscillator for HV CLK when GCLK is off

I

| (1U); /1l Use FMPLL as current source for GHV CLK
syst enREGL- >VCLKASRC = (6U << 8U) /1 Use second PLL output for FlexRay bit timng

| (0U); /1 Use main oscillator for DCANX bit tim ngs
syst emREGL- >RCLKSRC = (1U << 8U) /1l Set the RTI1CLK divider to divide-by-2

| (0V); /1 Use FMPLL as source for RTI1CLK

2.15.3 Configuring VCLK , VCLK2 and VCLK3 Frequencies

The VCLK and VCLK?2 clock signals are divided down from the HCLK clock signal. These are independent
dividers that can be configured via the system module clock control register (CLKCNTL).

NOTE:
* VCLK2 frequency must also be an integer multiple of VCLK frequency.
* There must be some delay between configuring the divide ratios for VCLK2 and VCLK.

The VCLKS clock signal is also divided down from the HCLK clock signal. This divider is in the Clock
Control Register 2 (CLK2CNTL).

2.16 Run a Diagnostic Check on CPU Self-Test Controller (STC)

This involves running one CPU self-test interval in STC check mode. The STC self-check mode causes a
stuck-at-0 fault to be introduced inside one of the two CPUs for there to be an STC failure. If no STC
failure is indicated, this would mean that the STC is not capable of detecting a fault inside the CPU, and
device operation is not reliable. For information on the configuration and execution of the STC self-test,
see the device-specific technical reference manual. The CPU will be reset once the STC self-test is
completed. The reset handler routine can resume the device initialization from the next step in the
sequence.

2.17 Run CPU Self-Test (LBIST)

For information on the configuration and execution of the CPU self-test, see the device-specific technical
reference manual. The CPU will be reset once the self-test is completed. The reset handler routine can
resume the device initialization from the next step in the sequence.

SPNA106A—-January 2012 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers 11

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

Standard Initialization Sequence for Hercules Microcontrollers www.ti.com

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

Run a Diagnhostic Check on the CPU Compare Module (CCM-R4F)

The CCM-R4F compares the dual Cortex-R4F CPU outputs on each CPU clock cycle. Any mismatch is
indicated as an ESM group?2 error. This ensures that the two CPUs are indeed operating in a lock-step
mode. The CCM-R4F module also allows the application to test the different error conditions using built-in
self-test routines. For information on how to configure the CCM-R4F in a self-test mode, see the
device-specific technical reference manual.

Run a Diaghostic Check on the Programmable Built-In Self-Test (PBIST) Controller

The PBIST engine is used to run memory test routines on all on-chip memories. It is critical for the
application to rely on this engine being able to detect and report a memory fault condition. Therefore it is
necessary for the application to test this error detection and reporting mechanism before actually using it
to test the on-chip memories. This is done by choosing to run a RAM test routine on a ROM memory. This
test must generate a memory test failure. The application can look for the error flag to ensure that the
PBIST controller can indeed detect and report a memory test failure. For information on how to configure
the PBIST controller for executing specific memory test algorithms on selected on-cip memories, see the
device-specific technical reference manual .

Start a Self-Test on the CPU RAM Using the PBIST Controller

The CPU RAM is tested first, so that the application can continue to execute while other memories are
being tested later. For information on configuring the PBIST controller, see the device-specific technical
reference manual.

Initialize the CPU RAM

The system module hardware for auto-initialization of on-chip memories also initializes the associated
ECC or parity locations. This mechanism is now used to initialize the CPU RAM. This process clears the
CPU RAM to all zeros and also programs the corresponding ECC locations.

Enable the Cortex-R4F CPU’s ECC Checking for BXTCM Interface

The CPU has internal ECC logic that protects all CPU accesses to the BTCM (RAM) interfaces. This logic
is not used by default and must be enabled by setting the BLTCMPCEN and BOTCMPCEN bits of the
System control coprocessor’s Auxiliary control register, c1.

Start a Self-Test on All Dual-Port Memories’ Using the PBIST Controller

Separate algorithms are used for testing single-port versus dual-port on-chip SRAMs. For information on
executing the self-test on the on-chip memories using the programmable BIST (PBIST) engine, see the
device-specific technical reference manual.

Run a Self-Test on CPU's ECC Logic for Accesses to TCRAM

The CPU TCRAM was initialized earlier, so that all TCRAM is cleared to zeros and the corresponding
correct ECC locations are programmed. The test of the CPU's ECC logic for accesses to TCRAM involves
corrupting the ECC locations to create single-bit and two-bit ECC errors. For the sequence to test the
CPU's ECC logic for accesses to TCRAM, see the device-specific technical reference manual or the
initialization example project. Note that reading from a TCRAM location with a double-bit ECC error
causes the CPU to take a data abort exception. The initialization example project also includes an
example data abort handler.

Run a Self-Test on CPU's ECC Logic for Accesses to Program Flash

The Flash interface module supports a diagnostic mode (mode 7) that allows the application to test the
CPU's ECC logic for accesses to program Flash. For the sequence to test the CPU's ECC logic for
accesses to program Flash, see the device-specific technical reference manual or the initialization
example project. Note that reading from a program Flash location with a double-bit ECC error causes the
CPU to take a data abort exception. The initialization example project also includes an example data abort
handler.

12

Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers SPNA106A—-January 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

I

TEXAS

INSTRUMENTS

www.ti.com Standard Initialization Sequence for Hercules Microcontrollers

2.26

2.27

2.28

2.29

2.30

Start a Self-Test on All Single-Port Memories’ Using the PBIST Controller

The CPU RAM can be excluded from this testing as it has already been verified before. For information on
executing the self-test on the on-chip memories using the programmable BIST (PBIST) engine, see the
device-specific technical reference manual.

On-Chip SRAM Auto-Initialization

The system module on the Hercules microcontroller allows all on-chip SRAMs to be initialized in hardware.
This is especially essential since all the on-chip memories support some form of error detection. The CPU
data RAM supports ECC while the peripheral memories support parity error detection. The
auto-initialization mechanism also initializes the ECC or parity memories, as required.

Run a Self-Test on All Peripheral RAMs' Parity Protection Mechanism

Accesses to most peripheral RAMs on this microcontroller are protected by parity error detection. Each of
the peripherals with the parity error detection for its associated memory also includes a self-test mode to
ensure that it is indeed capable of detecting and reporting a parity error on an access to the peripheral
RAM. These self-test mechanisms can be used by the application before enabling use of the concerned
peripheral.

Enable the Cortex-R4F CPU’s Vectored Interrupt Controller (VIC) Port

The CPU has a dedicated port that enables the VIM module to supply the address of an interrupt service
routine along with the interrupt (IRQ) signal. This provides faster entry into the interrupt service routine
versus the CPU having to decode the pending interrupts and identify the highest priority interrupt to be
serviced first.

The VIC port is disabled upon any CPU reset and must be enabled by the application. The VIC is enabled
by setting the VE bit in the CPU’s System Control Register (SYS).

Vectored Interrupt Manager (VIM) Configuration

The VIM module on the Hercules microcontrollers supports flexible mapping of interrupt request channels
and the interrupt generating sources. The default mapping between the channel number and the
interrupting module is defined in the device-specific data sheet. The interrupt channel number also defines
the inherent priority between the channels, with the lower numbered channel having the higher priority.
That is, the priority decreases in the following order: channel 0 — channel 1 — channel 2 — ... channel
95.

For this application report, assume that the application prefers to keep the default priority order between
the channels. For details on the control registers for changing the mapping between interrupt channels
and sources, see the device-specific technical reference manual.

The VIM module contains a memory that holds the starting addresses of the interrupt service routines for
each interrupt enabled in the application. This memory starts at base address OxFFF82000 on the
Hercules microcontrollers. It is organized in 97 words of 32 bits. The VIM address memory map is shown
in Figure 4.

SPNA106A—-January 2012 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers 13
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

Standard Initialization Sequence for Hercules Microcontrollers www.ti.com

2.30.1

2.30.2

2.31

2.32

2.33

Interrupt vector table address space

O0xFFF82000 Phantom Vector
OxFFF82004 Channel 0 Vector
O0xFFF82008 Channel 1 Vector

I I

I I

I I

I I

I I

I I

I I

I I
OxFFF82178 Channel 93 Vector
OxFFF8217C Channel 94 Vector

Figure 4. VIM Interrupt Address Memory Map

Configure Interrupts to be Fast Interrupts or Normal Interrupts

Each interrupt request to the VIM can be configured to be forwarded to the CPU as a fast interupt request
(FIQ) or a normal interrupt request (IRQ). The FIQ/IRQ Program Control Registers (FIRQPRX) allow this
selection.

Interrupt requests 0 and 1 are always FIQ. All others are IRQ interrupts by default.

NOTE: An interrupt request mapped to FIQ cannot use the CPU’s VIC port.

Enabling and Disabling Interrupts

Each interrupt request can be enabled or disabled using the Interrupt Enable Set (REQENASETX) and
Interrupt Enable Clear (REQENACLRKX) registers. The interrupt requests 0 and 1 are always enabled and
cannot be disabled. When an interrupt is disabled, it does not prevent the interrupt flag to get set when the
interrupt condition is generated but no IRQ or FIR exception is generated for the Cortex-R4F CPU.

Enable Interrupts in the Cortex-R4F CPU

Interrupts (IRQ and FIQ) are disabled inside the Cortex-R4F CPU by default and after a CPU reset. The
normal interrupt can be enabled by clearing the "I" bit of the Current Program Status Register (CPSR)
inside the Cortex-R4F CPU, while the fast interrupt (FIQ) can be enabled by clearing the "F" bit of the
CPSR.

Setup the Error Signaling Module (ESM) Responses to Groupl Errors

The ESM allows the application to choose the module response to errors in the Groupl classification.
These are errors of the lowest severity and can be handled by the application by generating an interrupt to
the CPU. The ESM also offers the capability to indicate any groupl errors on the external NERROR pin.

Additional Initializations Required by Compiler

If the source program is written using C or C++, the Tl compiler requires the creation of the C/C++
run-time environment. This includes:

« Initialization of copy table, if required

14

Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers SPNA106A—-January 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

13 TEXAS
INSTRUMENTS

www.ti.com

References

3

Initialization of global and static variables defines in C/C++
Initialization of global constructors
Make a function call to branch to the main application

These requirements could be different for each compiler. The compiler reference manual must be referred
to identify the specific requirements for the compiler being used.

2.34 Other Initialization Steps Not Described in this Document

The following is an additional list of operations that an application can perform during the device

initi

3

alization.
Verify that the DCC module can detect and report a frequency mismatch error.
Configure the DCC module to continuously monitor the PLL output frequency.

Several bus masters on this microcontroller include their own memory protection units to protect
against accesses to certain parts of the memory map. It is recommended to ensure that violations of
these MPU restrictions are detected and flagged as ESM errors.

Configure the MPU for each bus masters.

Run a background check on the program Flash memory using CRC and DMA.

Calibrate the embedded ADC module for any offset error.

Run a self-test on all ADC inputs to ensure that they are not open or shorted to power or ground.
Run an I/O loop-back check on all peripheral signals.

Configure the windowed watchdog module service window size as well as the module response to a
window violation.

Configure the N2HET1/N2HET2 monitoring capability.

Setup the RTI module to generate periodic interrupts as necessary.

Configure desired access permissions for peripherals using the PCR registers.

Configure any external safety companion chip, e.g., TI TPS6538x, for online diagnostic operation.

2.35 Call the Main Application

This is a normal function call when using C/C++. It could be a branch or branch-link to the name of the
routine that executes the application.

For example:

mai n();
exit();

3 References

3

.

TMS570LSxxx7 16/32-Bit Risc Flash Microcontroller Data Sheet (SPNS162)

TMS570LSxxx5 16/32-Bit Risc Flash Microcontroller Data Sheet (SPNS164)

TMS570LSxxx4 16/32-Bit Risc Flash Microcontroller Data Sheet (SPNS165)

RM48Lx50 16/32-Bit Risc Flash Microcontroller Data Sheet (SPNS174)

RM48Lx40 16/32-Bit Risc Flash Microcontroller Data Sheet (SPNS175)

RM48Lx30 16/32-Bit Risc Flash Microcontroller Data Sheet (SPNS176)

TMS570LS31/21 16/32-Bit RISC Flash Microcontroller Technical Reference Manual (SPNU499)
RM48 16/32-Bit RISC Flash Microcontroller Technical Reference Manual (SPNU503)

SPNA106A—-January 2012 Initialization of Hercules™ ARM® Cortex™-R4F Microcontrollers
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

15

http://www.ti.com
http://www.ti.com/lit/pdf/SPNS162
http://www.ti.com/lit/pdf/SPNS164
http://www.ti.com/lit/pdf/SPNS165
http://www.ti.com/lit/pdf/SPNS174
http://www.ti.com/lit/pdf/SPNS175
http://www.ti.com/lit/pdf/SPNS176
http://www.ti.com/lit/pdf/SPNU499
http://www.ti.com/lit/pdf/SPNU503
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA106A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from Tl to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	Initialization of Hercules ARM Cortex-R4F Microcontrollers
	1 Block Diagram
	2 Standard Initialization Sequence for Hercules Microcontrollers
	2.1 Enable Floating-Point Coprocessor (FPU)
	2.2 Initialize Cortex-R4F Registers
	2.3 Enable Response to ECC Errors in Flash Interface Module
	2.4 Enable the Cortex-R4F CPU’s Event Signaling Mechanism
	2.5 Enable the Cortex-R4F CPU’s ECC Checking for ATCM Interface
	2.6 Handle the Cause of Reset
	2.7 Configure PLLs
	2.7.1 FMPLL Block Diagram
	2.7.2 FMPLL Configuration

	2.8 Enable Clock Sources
	2.8.1 Available Clock Sources on Hercules Microcontrollers
	2.8.2 Control Registers for Enabling and Disabling Clock Sources
	2.8.3 Example Clock Source Configuration

	2.9 Run Self-Test on the eFuse Controller SECDED Logic
	2.10 Release Reset and Clocks to Peripherals
	2.11 Configure Flash Access
	2.12 Configure Flash Bank and Pump Power Modes
	2.13 Configure Oscillator Monitor
	2.14 Run Self-Test on the Flash Module SECDED Logic
	2.15 Clock Domains
	2.15.1 Mapping Clock Domains to Clock Sources
	2.15.2 Example Clock Domain Mapping
	2.15.3 Configuring VCLK , VCLK2 and VCLK3 Frequencies

	2.16 Run a Diagnostic Check on CPU Self-Test Controller (STC)
	2.17 Run CPU Self-Test (LBIST)
	2.18 Run a Diagnostic Check on the CPU Compare Module (CCM-R4F)
	2.19 Run a Diagnostic Check on the Programmable Built-In Self-Test (PBIST) Controller
	2.20 Start a Self-Test on the CPU RAM Using the PBIST Controller
	2.21 Initialize the CPU RAM
	2.22 Enable the Cortex-R4F CPU’s ECC Checking for BxTCM Interface
	2.23 Start a Self-Test on All Dual-Port Memories’ Using the PBIST Controller
	2.24 Run a Self-Test on CPU's ECC Logic for Accesses to TCRAM
	2.25 Run a Self-Test on CPU's ECC Logic for Accesses to Program Flash
	2.26 Start a Self-Test on All Single-Port Memories’ Using the PBIST Controller
	2.27 On-Chip SRAM Auto-Initialization
	2.28 Run a Self-Test on All Peripheral RAMs' Parity Protection Mechanism
	2.29 Enable the Cortex-R4F CPU’s Vectored Interrupt Controller (VIC) Port
	2.30 Vectored Interrupt Manager (VIM) Configuration
	2.30.1 Configure Interrupts to be Fast Interrupts or Normal Interrupts
	2.30.2 Enabling and Disabling Interrupts

	2.31 Enable Interrupts in the Cortex-R4F CPU
	2.32 Setup the Error Signaling Module (ESM) Responses to Group1 Errors
	2.33 Additional Initializations Required by Compiler
	2.34 Other Initialization Steps Not Described in this Document
	2.35 Call the Main Application

	3 References

