{'f TEXAS
INSTRUMENTS

AutoSAR FEE Driver

User Manual

Version 1.14
Aug05, 2016

Copyright © Texas Instruments Incorporated

Read This First

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is
not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. Tl does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of Tl covering or relating to any combination, machine, or
process in which such products or services might be or are used. TI's publication of information
regarding any third party’s products or services does not constitute TI's approval, license, warranty or
endorsement thereof.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices.
Representation or reproduction of this information with alteration voids all warranties provided for an
associated Tl product or service is an unfair and deceptive business practice, and Tl is neither
responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated by
TI for that product or service voids all express and any implied warranties for the associated TI product
or service, is an unfair and deceptive business practice, and Tl is not responsible nor liable for any such
use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm

Preface

Read This First

About This Manual

This user manual serves as a software programmer’s handbook for working with the
AutoSAR FEE Driver. It provides necessary information regarding how to build and use AutoSAR

FEE Driver in user systems and applications.

It also provides details regarding the AutoSAR FEE Driver functionality, the requirements it
places on the hardware and software environment where it can be deployed, how to customize/
configure it etc. It also provides supplementary information regarding steps to be followed for proper
installation/ un-installation of the AutoSAR FEE Driver.

Important Notes

Customers have to include FO21 API library v2.01.01 or greater.

Abbreviations

1-1. Table of Abbreviations

Abbreviation

Description

AutoSAR FEE Driver

This is Tl coined name for the product.

FEE

Flash EEPROM Emulation

Read This First

Document Revision History

Version Date Revision History

1.0 09/25/2012 Initial version

1.1 11/08/2012 Changes for EA2

1.2 11/21/2012 Additional changes for BETA

1.3 12/12/2012 Add error recovery prototypes

1.4 06/11/2013 Add software revision history. Added new
configuration tags information.

15 10/23/2013 Updated software revision history.

1.6 01/03/2014 Add new configuration parameter for
address range check for Read/Write.

Check for Multi bit error during Read.
MISRA fixes.

1.7 09/11/2014 Manual Suspend/Resume feature added.

1.8 10/15/2014 RAM Optimization changes.

19 10/31/2014 Support TMS570LS05xx, TMS570LS07xX,
TMS570LS09xx. Range updated for
FEE_VirtualSectorNumber, Virtual Sectors

1.10 01/21/2015 Changes related to unification of Archer and
Champion.

1.11 10/14/2015 Budfix for block lost issue.

1.12 11/20/2015 Enhancement for “Do not change FEE state
to IDLE after copying of the blocks is
completed”

1.13 03/15/2016 Bugfix for “Block offset address does not get
updated correctly, if copy operation was
interrupted.” Added section “Important Notes”

1.14 08/05/2016 Updated software revision history.

Software Revision History

Version

Date

Revision History

00.01.00

08/31/2012

Initial version

00.01.01 10/29/2012 Changes for implementing Error Recovery

00.01.02 11/30/2012 Misra Fixes, Memory segmentation changes

00.01.03 01/14/2013 Changes as requested by Vector. If there is an immediate
eraselinvalidate block request before writing of a block ,
API should return the job status as JOB_OK.

00.01.04 02/12/2013 Integration issues fix. Fixed issues regarding integration of
FEE with NvM.

00.01.05 03/04/2013 Added Deleting a block feature

00.01.06 03/11/2013 Added feature : copying of unconfigured blocks.

00.01.07 03/15/2013 Added feature : Number of 8 bytes writes, fixed issue with
copy blocks.

00.01.08 04/05/2013 Added feature : CRC check for unconfigured blocks, Main
function modified to complete writes as fast as possible,
Added Non polling mode support.

00.01.09 04/19/2013 Warning removal, Added feature comparison of data
during write.

00.01.10 06/11/2013 Fixed issue with erase sector. Also fixed issue with 2
EEPROM'’s where if one EEPROM is locked with error
condition, other EEPROM wiill not get locked.

01.10.00 10/23/2013 Updated software to support more than two VS.

01.20.00 01/03/2014 Add new configuration parameter for address range check
for Read/Write.

Check for Multi bit error during Read.
MISRA fixes.

01.20.01 09/11/2014 Manual Suspend/Resume feature added.

01.21.00 10/15/2014 RAM Optimization changes. New configuration parameter
FEE_TOTAL_BLOCKS_DATASETS added.

01.22.00 01/21/2015 Add new Configuration parameters.
FEE_VIRTUALSECTOR_SIZE,
FEE_PHYSICALSECTOR_SIZE,
FEE_GENERATE_DEVICEANDVIRTUALSECTORSTRUC

01.23.00 10/14/2015 Bugfix for block lost issue.

01.23.01 11/20/2015 Enhancement for “Do not change FEE state to IDLE after
copying of the blocks is completed”

01.23.02 03/15/2016 Bugfix for “Block offset address does not get updated

correctly, if copy operation was interrupted.”

Read This First

01.23.03

08/05/2016

Fee_ Getstatus API should return MEMIF_BUSY, if FEE is
doing internal operations.

cContents

q=T= Lo B I TS T = OSSR 3
(O70] o] =] 0] £SO PR OP PP ROPRRRPPRPPS 7
Table Of tADIES ... 9
TaDIE OF fIQUIES ..ot beeeenneas 10
(@ =T 01 (=T Nt SRS 11
AUtOSAR FEE Driver INtrodUCTIONccvv it 11
I A O 1= V1 12
1.1.1 Functions supported in the AUtoSAR FEE Drivercccccevvvvvunnns 12
1.1.2 SyStem REQUIFEMENTEScooviiieiiiiiii e e 13

(@ =T 0} (=] PSSP 14
AUtOoSAR FEE Driver DeSign OVEIVIEWccccveiiiiiiieiieciiee et esie e e nnee 14
L@ V=T 1= SRR 14
2.1 Flash EEPROM Emulation Methodologycccoooeiiiiiiiiiiiiiiiiiieeeeeeeeeiies 15
2.1.1 Virtual Sector Organization.............ooeeeuuuiiiiineeeeeeeeeiiicee e e eeeeeaeens 15
2.1.2 Data Block Organization...........cccceeevveveiiiiiiiie e e e e e 18
2.1.3 Available Commands...........cooiiiiiiiii 20
2.1 4 StAtUS COUESuiuiii et e e e e e e e e e e e e e e e e eeaannnas 20
215 JOD RESUIL... .o 20

(@ g F= T 0] (=T SO ST 21
INTEGratioN GUIAE ... be e naeens 21
3.1 Error Recovery Implementationcccovvvvuiiiiiieeeeeeeeeiicce e e e e eeeeeaeenes 21
3.2 Single and Double bit Error Correctionsccooeeeeeeieiiiiiiiiiieeee e 22
GG T V1= 0 o] V1 = o] o1 1 o PP 22
3.4 Symbolic Constants and Enumerated Data typescccceeeeeeeeieeeeennnns 23
3.5 DAlA SIUCIUIES ... et a e eaans 26
3.6 AutoSAR FEE Driver Configuration Parameters...........cccccceeeeeeeeeeeeennnnnns 27
3.6.1 Block Overhead..........ooovuiiiiii e 27
3.6.2 Maximum BIOCKING TIMEuuiiiiieiiiieeeee e 27
3.6.3 Page Overhead ... 27
3.6.4 Sector OVerhNeadoovuiiiiiii e 27
3.6.5 Virtual Page SiZecoooiiiiiiiieee e 28
3.6.6 DIVEE INAEX vttt e e e e e e e anes 28
3.6.7 Job Error NOtfICAtiONvvuiiiie e e e 28

Contents

3.6.8 JOb ENd NOUfICAIONcevviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 28
3.6.9 FEE Operating FreqQUENCY........coiiiiiiiiiiiiiiceie e 29
3.6.10 POIlING MOAEoveiiie e e e e e e e aaaananas 29
3.6.11 Enable Error COrreCtioNcoeeieeiiiiiiiiiiiiie et e e 29
3.6.12 Error Correction HandliNg........ccooeeeeeiiiiieiiiiiiee e e e 30
3.6.13 Block Write COUNEI SAVEoiiiiiiiiiiiiiiiiiee et 30
3.6.14 ENADIE CRCooiiiiiiiiiiiiiiie ettt 30
3.6.15 NUMDEIOFEEPS.... oo 30
3.6.16 Number Of BIOCKS..........cuuiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 31
3.6.17 Number of Virtual SECIOISccooiiiiiiiiiiiiiiii e 31
3.6.18 Number of Virtual Sectors on EEPLcovvviiiiiiiiiiiiiiiiiiiiiiiiiiee 31
3.6.19 Number of Eight Byte WIESccoiiiiiiiiiiiiie e 31
3.6.20 Maximum Number of non configured blocks to copy...........ccceeeuueee. 32
3.6.21 Address Range check during Read/WIiteccovvviiiiniiieiiiieeiinnns 32
3.6.22 Number of blocks and Data Sets..............cuuveiiiiiiiiieiiiiiiiiiiiiieeeieieeee 32
3.6.23 Generate Device and Virtual Sector Structures...........ccooeeeeeeeveeennnes 32
3.6.24 Required Virtual SECIOr SIZecccvvvieeiiiiiiee e 33
3.6.25 FEE bank Physical Sector Size..........ooouuiiiiiiiiiiiiiiiici e 33
3.6.26 Virtual Sector Configurationcoeeuvuviiiiieeeeeeeeciiee e e ee e 34
3.6.27 Block Configurationoeuuuueiiiiiieeeeieeii e 36
3.7 AP ClaSSIfICAtIONuuuuiiiiii it eeeeaeeee 40
3.7.1 INIGIALIZATION ... 40
3.7.2 Data OPEratioNSciieeeeeeeeeiiiie e e e e e e e e e e e e e e e e e e eeeannnn 40
3.7.3 INFOIMALION ... e 41
3.74 INternal OPEratioNS........cccceiviieiieiiiee e e e e e 41
3.7.5 Cancel/ Terminate OPErationscoeeeeeeeieeeiiiiiiiiee e eeeeeiiiins 41
3.7.6 Error Information and Recovery Operations..............ccccceeeeeeeeeeeeennnnns 41
3.7.7 Suspend/Resume Erase SECION..........couuuuiiiiieeiiiieiiiiiiee e eeeeeiaeees 42
3.8 Integration EXAMPIE ... 43
3.9 APl SPECIHICALION .eeeveiiiiee et e e e e e e e e e e e e e e aanannes 44
3.9.1 AutoSAR FEE Driver FUNCLIONScuviiiiiiiiiiiiiiiieiiiiieiieieeeeeeeeeeeeee 44
3.10 Privilege MOOE ACCESScceeivieiiiiiiiie e e e e ee et e e e e e e e e e eeeaaa e e e e e e eeeaaennns 53
3.11 Deviations from Autosar3.X requUIremMentsccooeeeeeeeeieiiiniinneeeeeeeeeenennns 53
3.12 IMPOITANT NOES ... eaans 53

Table of tables

1-1. Table of ADDIeVIAtiIONSccoiii s 3
Document REVISION HISTOIY ..c.oiiiiiiiiie ettt 4
Software ReVISION HIiSTOMY ..ot 4
2-1. Virtual Sector Header States ... 17
2-2. Virtual Sector Header backup STatesS...........cccovviieiieieiie e 17
4. Data Block Header Field Definitions ... 19
2-2. Data Block Header Field DefinitioNsS ... 19
5. Data BIOCK STALES ..o 19
4-1. AutoSAR FEE Driver Symbolic Constants.........ccccoccevievieie s, 25
4-2. AutoSAR FEE Driver Published Information Data Structure....................... 26
4-3. AutoSAR FEE Driver General Configuration Data Structure...................... 26
4-4. AutoSAR FEE Driver Initialization APIS ..o 40
4-5. AutoSAR FEE Driver Data Operation APIScccccceceiieiieie e 40
4-6. AutoSAR FEE Driver Information APIS ..o 41
4-7. AutoSAR FEE Driver Internal Operation APIS.......cccoooiiiiiiiiiinieseneeie e 41
4-8. AutoSAR FEE Driver Terminate/Cancel Operation APIS........ccccceeviveiinnen. 41
4-9. AutoSAR FEE Driver Error Info and Recovery APIS........cccccocvvveveicieieeienn, 41
4-10. Tl FEE Driver Suspend/Resume Erase Sector APIScccovvvviineiinnnn, 42

Table of figures

Table of figures

Figure 1 Virtual Sector Organization.............couvvevuuiuiiiiieeeeeeeeeeiiiees e e e e e e e 16
Figure 2 Virtual SECtOr HEAUEuuuiiiii e 17
Figure 3 Data Block Structure

10

Chapter 1

AutoSAR FEE Driver Introduction

This chapter introduces the AutoSAR FEE Driver to the user by providing a brief overview of
the purpose and construction of the AutoSAR FEE Driver along with hardware and software
environment specifics in the context of AutoSAR FEE Driver deployment.

11

AutoSAR FEE Driver Introduction

1.1 Overview

This section describes the functional scope of the AutoSAR FEE Driver and its feature set. It
introduces the AutoSAR FEE Driver to the user along with the functional decomposition and
run-time specifics regarding deployment of AutoSAR FEE Driver in user’s application.

Many applications require storing small quantities of system related data (e.g., calibration
values, device configuration) in a non-volatile memory, so that it can be used, modified or
reused even after power cycling the system. EEPROMSs are primarily used for this purpose.
EEPROMSs have the ability to erase and write individual bytes of memory many times over
and the programmed locations retain the data over a long period even when the system is
powered down.

The objective of AutoSAR FEE Driver is to provide a set of software functions intended to
use a Sector of on-chip Flash memory as the emulated EEPROM. These software functions
are transparently used by the application program for writing, reading and modifying the data.
The AutoSAR FEE Driver contains AutoSAR interface functions and any additional
management functions needed to operate properly.

A list of functions supported by the AutoSAR FEE Driver can be found in Section 1.1.1. The
primary function responsible for Fee management is the function Fee_Manager. This
function shall operate asynchronously and with little or no user intervention after
configuration, maintaining the Fee structures in Flash memory. When using the AutoSAR
interface, Fee_MainFunction function will be called on a cyclic basis which in turn calls
Fee Manager when no other pending Fee operations are pending. When not using the
AutoSAR interface, the user shall be responsible for calling Fee_MainFunction function on a
cyclic basis so that it can perform internal operations.

1.1.1 Functions supported in the AutoSAR FEE Driver

The Autosar FEE Driver provides the following functional services:

Initialization:

. Fee_Init

Operations:

. Fee Write

. Fee Read

. Fee EraselmmediateBlock
. Fee_InvalidateBlock
. Fee_Cancel
Information:

. Fee_ GetStatus

. Fee GetJobResult

. Fee_GetVersioninfo

Internal Operations:

. Fee_MainFunction

12

Error Information and Recovery:
o Tl_FeeErrorCode

. Tl_Fee_ErrorRecovery

Suspend/Resume Erase of Sector:

. Tl_Fee_SuspendResumeErase

1.1.2 System Requirements

The AutoSAR FEE Driver is supported on platforms characterized by the following Software
and Hardware requirements.

1.1.2.1 Software

The AutoSAR FEE Driver was developed and validated on a system with the following
operating system and software installed

. Operating System : Win7
. Codegeneration tools : TM570 Code Generation tools 4.9.5
. Fee Configuration Files : The user needs to generate two configuration files using

a configuration tool to successfully deploy and use AutoSAR FEE Driver. These
two files (Fee_Cfg.h & Fee Cfg.c) define which Flash sectors to be used for
EEPROM emulation, define Data Blocks ,Block Size and other configuration

parameters.

. Flash API library : The AutoSAR FEE Driver uses the Flash API library for
performing program/erase operations. Customers have to use F021 v2.01.01 or
greater.

13

AutoSAR FEE Driver Design Overview

Chapter 2

AutoSAR FEE Driver Design
Overview

Overview

The Flash EEPROM Emulation (Fee) module contains AutoSAR interface functions and
additional management functions needed to operate it properly. A list of functions
supported by the AutoSAR FEE Driver can be found in Section 1.1.1.

This chapter describes the implementation method followed for Flash EEPROM emulation
in the AutoSAR FEE Driver.

14

2.1 Flash EEPROM Emulation Methodology

The EEPROM Emulation Flash bank is divided into two or more Virtual Sectors. Each Virtual
Sector is further partitioned into several Data Blocks. Data Blocks can be further partitioned
into Datasets. A minimum of two Virtual Sectors are required for Flash EEPROM emulation.

The initialization routine (Fee_lInit) identifies which Virtual Sector to be used and marks it as
Active. The data is written to the first empty location in the Active Virtual Sector. If there is
insufficient space in the current Virtual Sector to update the data, it switches over to the next
Virtual Sector and copies all the valid data from the other Data Blocks in the current Virtual
Sector to the new one. After copying all the valid data, the current Virtual Sector is erased
and the new one is marked as Active Virtual Sector. Any new data is now written into the new
Active Virtual Sector and the erased Virtual Sector is used again once this new Virtual Sector
has insufficient space.

Virtual Sectors and Data Blocks have certain space allocated to maintain the status
information which is described in more detail in the following sections.

2.1.1 Virtual Sector Organization

The Virtual Sector Structure is the basic organizational unit used to partition the EEPROM
Emulation Flash Bank. This structure can contain one or more contiguous Flash Sectors
contained within one Flash Bank. A minimum of 2 Virtual Sectors are required to support
the Flash EEPROM Emulation (FEE) Driver.

The internal structure of the Virtual Sector contains a Virtual Sector Header, a static Data
Structure and the remaining space is used for Data Blocks.

15

AutoSAR FEE Driver Design Overview

Virtual Sector Organization

Virtual Sector Header

Block 3 Block 5 DS4 ... Block n

Block n

Block 3 Block 3 Block 5 DS3 Block 0 Block 1 DS2

Block 3

Block 2

Block 5 DS4 Block X

Block X

Block X

Block X

Block n

Block X

Block 3 Block 5 DS3 Block 2

Block n

Virtual
Sector

« r'd Virtual Sector Header T

Block n Block5 DS3 ... Block 3

Block 1 DS2

Block 2

Block n Block 5 DS4 Block 5 DS3

Block X

Block X

Block X

Block X

Block X

Block X

Figure 1 Virtual Sector Organization

16

Virtual
Sector

2111

Virtual Sector Header

The Virtual Sector Header consists of two 64bit words (16 bytes) that start at the first
address for a Virtual Sector Structure. The state of the Virtual Sector Structure is
maintained in the Virtual Sector Header.

The Status Word is the first 64 bit word of the Virtual Sector Header and is used to
indicate the current state of the Virtual Sector.

64 bit Status Word

32 bit backup Erase Count Version Number
Status 8 bits reserved (20 bits) (4 Bits)

Figure 2 Virtual Sector Header

The following table indicates the various states a Virtual Sector can be in.

State Value

Invalid Virtual Sector OXFFFFFFFFFFFFFFFF
Empty Virtual Sector 0x0000FFFFFFFFFFFF
Copy Virtual Sector 0x00000000FFFFFFFF
Active Virtual Sector 0x000000000000FFFF
Ready for Erase 0x0000000000000000

2-1. Virtual Sector Header States

Invalid Virtual Sector: This Virtual Sector is either in process of being erased or has
not yet been initialized.

Empty Virtual Sector: This indicates the Virtual Sector has been erased and
initialized and can be used to store data.

Copy Virtual Sector: This indicates that the Data Block Structure is being moved
from a full Virtual Sector to this one to allow for moving of the Active Virtual Sector.

Active Virtual Sector: This Virtual Sector is the active one.

Ready for Erase: This Virtual Sector's Data Block Structure has been correctly
replicated to a new Virtual Sector and is now ready to be erased and initialized for re-
use.Virtual Sector Information Record is the second 64 bit word in the Virtual Sector
header. It is used to record information needed by the Virtual Sector management
algorithm. Currently the first 4 bits are used to indicate the current version of the Virtual
Sector and the next 20 bits are used to indicate the number of times the Virtual Sector
has been erased. The erase count is incremented each time the Virtual Sector is
erased. The remaining bits are reserved for future use.

State Value
Copy Virtual Sector OXFFFFFFFF
Active Virtual Sector 0x00000000

2-2. Virtual Sector Header backup States

17

AutoSAR FEE Driver Design Overview

If the normal Virtual sector header is corrupted, then the backup status will be used to
know the VS state.

After VS header, the next 8 bytes are used to know erase status of the VS. It says, if the
erase was started/completed/ready for erase. Next 8 bytes are reserved.

0x 0000FFFFFFFFFFFF — Erase of other VS started
O0x 00000000FFFFFFFF — Erase of other VS completed
0x000000000000FFFF — This VS is ready for Erase.

2.1.2 Data Block Organization

The Data Block is used to define where the data within a Virtual Sector is mapped.
One or more variables can be within a Data Block based on the user definition. The
smallest amount of data that can be stored within the Data Block is 64 bits. The Data
Block Structure is limited to the size of the Virtual Sector it resides in.

Note: The size of all the Data Blocks cannot exceed the Virtual Sector length.

When a Data Packet write exceeds the available space of the current Virtual Sector,
the Data Block structure is duplicated in the next Virtual Sector to be made active.

Data Block Structure

Block5 Dataset2 Block5 Dataset6 Blockl Dataset2 Block3 Datasetl
Header Header Header Header
Block4 Dataset4 Block2 Dataset2 Blockl Dataset8 Block2 Dataset3
Header Header Header Header

Figure 3 Data Block Structure

18

2.1.2.1 DataBlock Header

The Data Block Header is 24 bytes in length and is used to indicate the location
information (address) of valid data within a Virtual Sector.

A Standard Data Block Header has the following fields

Block Number (16 bits)

Block size (16 bits)

Block W/E Cycle count - optional (32 bits) / reserved if saving not enabled

CRC - optional (32 bits)

Address of previous Valid Block (32 bits)

Block Status (64 bits)

4. Data Block Header Field Definitions

A Standard Data Block Header has the following fields

Bit(s) Field Description
191-176 Block Number This is used to indicate the block number.
175-160 Block size Indicates size of block
159-128 W/E counter Indicates write/erase counter for a block
127-96 CRC Indicates CRC of block
95-64 Address Address of the previous valid block
63-0 Status of the These_ 64 bits ?ndicate the Stf’;\tus of the _Block. The
Block following Table lists all the possible combinations for the
Block Status.

2-2. Data Block Header Field Definitions

State Value
Empty Block OXFFFFFFFFFFFFFFFF
Start Program Block OXFFFFFFFFFFFFO000
Valid Block OxFFFFFFFF00000000
Invalid Block OxFFFF000000000000
Corrupt Block 0x0000000000000000

5. Data Block States

Block Status is used to ensure that data integrity is maintained even if the Block (data)
update process is interrupted by an uncontrolled event such as a power supply failure or

reset.

Empty Block: New Data can be written to this Block.

19

AutoSAR FEE Driver Design Overview

Start Program Block: This indicates that the Data Block is in the progress of being
programmed with data.

Valid Block: This indicates that the Data Block is fully programmed and contains Valid
Data.

Invalid Block: This indicates that the Data Block contains invalid or old data.

Corrupt Block: This indicates that the Data Block is corrupted and the Software should
ignore this Block.

2.1.3 Available Commands

The following list describes the available commands.

1. Write: This command shall program a Flash memory block.

2. Read: This command shall copy a continuous Flash memory block.

3. Erase Immediate: This command shall change the status of the block to Invalid in
the Data Block header to Erase it.

4. Invalidate Block: This command shall change the status of the block to Invalid in
the Data Block header to invalidate it.

2.1.4 Status Codes

This indicates the status of the Fee module. It can be in one of the following states

1. MEMIF_UNINIT: The Fee Module has not been initialized.

2. MEMIF_IDLE: The Fee Module is currently idle.

3. MEMIF_BUSY: The Fee Module is currently busy.

4. MEMIF_BUSY_INTERNAL: The Fee Module is currently busy with internal
management operations

2.1.5 Job Result

This indicates the result of the last job. The job result can be any one of the following

states

1. MEMIF_JOB_OK: The last job has finished successfully

2. MEMIF_JOB_PENDING: The last job is waiting for execution or is currently being
executed.

3. MEMIF_JOB_CANCELLED: The last job has been cancelled.

4. MEMIF_JOB_FAILED: The last read/erase/write job failed.

5. MEMIF_JOB_INCONSISTENT: The requested block is inconsistent, it may contain
corrupted data.

6. MEMIF_JOB_INVALID: The requested block has been invalidated. The requested
read operation cannot be performed

20

Chapter 3

Integration Guide

This chapter discusses the AutoSAR FEE Driver run-time interfaces that comprise the API
classification & usage scenarios and the API specification itself in association with its data types
and structure definitions. Users will have to integrate Tl FEE along with the Flash FO21 library.
The Tl FEE Driver uses the Flash API library for performing program/erase operations. The
apprioprate Flash API library depending on the type of Flash technology has to be included in
the.(FO21 API V2.01.01 or greater). Users also need to integrate the generated configuration files.

3.1 Error Recovery Implementation

Projects should implement error recovery mechanism to recover from serious errors. They
should call the API TI_FeeErrorCode() periodically to check if there are any severe
errors(Error_TwoActiveVS, Error_TwoCopyVS, Error_SetupStateMachine, Error_NoActiveVS,
Error_CopyButNoActiveVS, Error_NoFreeVS, Error_EraseVS). If error is any of the above type,
then API TI_Fee_ErrorRecovery() should be called with proper parameters.

If the error is of type Error_TwoActiveVS or Error_TwoCopyVS or
Error_CopyButNoActiveVS, then the application has to provide info on which of the VS needs to be
corrected in u8VirtualSector. TI_Fee ul6ActCpyVS will provide info on which of the VS's are
Active/Copy. For error of type Error_CopyButNoActiveVS, TI_Fee_ul6ActCpyVS will provide info
on which VS is Copy. In this case, the second argument for the TI_Fee_ ErrorRecovery should be
the copy VS number. Error recovery APl will mark the VS as Active.

If the error is of type Error_NoFreeVS, then the application has to provide info on which of
the VS needs to be erased in u8VirtualSector. TI_Fee_ ul6ActCpyVS will provide info on which VS
is active.

If the error is of type Error_SetupStateMachine, recheck configuration. Configure RWAIT,
EWAIT and operating frequency correctly.

If the error is of type Error_EraseVS, this means either erasing or a blank check of VS failed.
Call error recovery function to perform erase again. Check the variables
Tl_Fee_GlobalVariables[uBEEPIndex].Fee_ul6ActiveVirtualSector /
TI_Fee_GlobalVariables[u8EEPIndex].Fee_ul6CopyVirtualSector to know which of the VS'’s are
active/copy. Erase other sectors.

Application can access the variable “Tl_Fee_ul6ActCpyVS” to know details about the VS's.
Prototype for the API's are:

Tl_Fee_ErrorCodeType Tl_FeeErrorCode(uint8 uSEEPIndex);

void TI_Fee_ErrorRecovery(Tl_Fee_ErrorCodeType Error Code, uint8 u8VirtualSector);

If two EEPROM'’s are configured, then TI_FeeErrorCode has to be called cyclically with different
index.

Ex: TI_FeeErrorCode(0) and TI_FeeErrorCode(1)

21

Integration Guide

If Error is of type Error_TwoActiveVS and TI_Fee_ul6ActCpyVS = 0x0003, this means VS 1 and 2
are Active.

If projects want to make VS 1 as Active, then
Call TI_Fee_ ErrorRecovery(Error_TwoActiveVs, 2);
Virtual sector 2 will be marked as Ready for Erase.

Virtual sector numbers start from 1.

3.2 Single and Double bit Error Corrections

FEE software provides a mechanism to detect single and double bit errors. In order to use
this feature, application has to make sure that “EE_EDACMODE[3:0]: Error Correction Mode”
in “EE_CTRL1" should be set to a value other than 0101, “EE_ONE_EN: Error on One Fail
Enable” should be enabled, “EE_ZERO_EN: Error on Zero Fail Enable” should be enabled,
“EE_EDACEN][3:0]: Error Detection and Correction Enable” should be set to a value other
than 0101.

Projects have to then call error hook functions TI_Fee_ ErrorHookSingleBitError () and
Tl_Fee_ ErrorHookDoubleBitError () in ESM. For single bit error, an event is generated on
channel 35 of ESM and for double bit error on channel 36 of ESM.

3.3 Memory Mapping
Following macros can be used for reallocating code, constants and variables.
e FEE_START_SEC_CONST_UNSPECIFIED
e FEE_STOP_SEC_CONST_UNSPECIFIED

FEE_START_SEC_CODE

FEE_STOP_SEC_CODE

FEE_START_SEC_VAR_INIT_UNSPECIFIED

FEE_STOP_SEC_VAR_INIT_UNSPECIFIED

22

3.4 Symbolic Constants and Enumerated Data types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. Described alongside the
macro or enumeration is the semantics or interpretation of the same in
terms of what value it stands for and what it means.

Group or Enumeration Class

Symbolic Constant Name

Description or

Evaluation
Fee_ StatusType FEE_OK Function returned no
error
FEE_ERROR Function returned an
error

VirtualSectorStatesType

VsState Invalid =1

Virtual Sector is Invalid

VsState Empty =2

Virtual Sector is Empty

VsState Copy =3

Virtual Sector is Copy

VsState Active =4

Virtual Sector is Active

VsState_ReadyForErase =5

Virtual Sector is Ready
for Erase

Block_StartProg=1

Write/Erase/Invalid
operation is in progress

on this Block
BlockStatesType
Block Valid=2 Block is Valid
Block Invalid=3 Block is Invalid
Error_Nil=0

Fee ErrorCodeType

Error TwoActiveVS=1

Error_ TwoCopyVS=2

Error SetupStateMachine=3

Error_CopyButNoActiveVS=4

Error NoActiveVS=5

Error BlockInvalid=6

Error NullDataPtr=7

Error_NoFreeVS=8

Error_InvalidVirtualSectorPara
meter=9

23

Integration Guide

Error_ExceedSectorOnBank=1
0

Error_EraseVS=11

Error_BlockOffsetGtBlockSize
=12

Error LengthParam=13

Error_FeeUninit=14

Error Suspend=15

Error_InvalidBlockindex=16

Error_NoErase=17

Error CurrentAddress=18

Error_Exceed_No_Of DataSet
s=19

Fee_None Take no action on single
. . bit errors
Fee_FlashErrorCorrectionActionType
Fee Fix Correct single bit errors
MEMIF_UNINIT FEE Module is
Uninitialized
MEMIF_IDLE FEE Module is Idle
Fee_ StatusCodeType
MEMIF BUSY FEE Module is Busy
MEMIF_BUSY_INTERNAL FEE Module is
performing internal
operations
Erase If setto ‘1’ indicates
Erase operation is in
progress
Fee_StatusWordType_UN ReadSync If setto 'l indicates

Synchronous Read
operation is in progress

ProgramFailed

If setto ‘1’ indicates
there was an error during
write operation. This is
now deprecated.

Read If setto ‘1’ indicates
Read operation is in
progress

Writesync If setto ‘1’ indicates

Sync Write operation is

24

in progress

WriteAsync

If setto ‘1’ indicates
Async Write operation is
in progress

Eraselmmediate

If setto ‘'l indicates
Erase immediate
operation is in progress

InvalidateBlock

If setto ‘1’ indicates
Invalidate operation is in
progress

Copy

If setto ‘1’ indicates
Copy operation is in
progress

Initialized

If setto ‘1’ indicates
FEE is initialized. This is
now deprecated.

SingleBitError

If setto‘l’ indicates
there was a single bit
error during read
operation. This is now
deprecated.

FEE_SW_MAJOR_VERSION

FEE

#define Macro which indicates the Major version of the

FEE_SW_MINOR_VERSION

FEE

#define Macro which indicates the Minor version of the

FEE_SW_PATCH_VERSION

#define Macro which indicate the Patch version of the FEE

4-1. AutoSAR FEE Driver Symbolic Constants

25

Integration Guide

3.5 Data Structures

This section summarizes the entire user visible data structure elements pertaining to the
AutoSAR FEE Driver run-time interfaces.

Name Fee_PublishedInformationType
Description Used to contain Published Information
Fields Data Range | Description

type
FeeBlockOverhead Uint8 0x18 Block OverHead in bytes
FeeMaximumBlockingTime | Float32 600us | Maximum Blocking time in us
FeePageOverhead Uint8 0x0 Page overhead in bytes
FeeVirtualSectorOverhead | Uint8 0x10 Virtual Sector overhead in bytes

4-2. AutoSAR FEE Driver Published Information Data Structure

Name
Fee_GeneralConfigType
Description Used to contain General configuration
information
Fields Data Range Description
type
FeeDevErrorDetect boolean STD_ON/ | Indicates if
STD_OFF | Development Error
Detection is enabled
Feelndex uint32 0 Instance ID of this
module. Should
always be 0
*FeeNvmJobEndNotification Fee Call | - Mapping to upper level
backType job end natification
*FeeNvmJobErrorNotification Fee_Call | - Mapping to upper level
backType job error notification
FeePollingMode boolean STD_ON/ | Indicates if polling
STD_OFF | mode is enabled
FeeVersionInfoApi boolean STD_ON/ | Indicates if version
STD_OFF | info API is compiled.
FeeVirtualPageSize uint16 0x8 Defines the virtual
page size

4-3. AutoSAR FEE Driver General Configuration Data Structure

26

3.6 AutoSAR FEE Driver Configuration Parameters

The AutoSAR FEE Driver needs two configuration files. These two files (Fee_Cfg.h &
Fee_cfg.c) define which Flash sectors to be used for EEPROM emulation, define Data
Blocks, Block Size and other configuration parameters. This section describes the
configuration parameters in the AutoSAR FEE Driver.

3.6.1

3.6.2

3.6.3

Block Overhead

Parameter Name

FEE_BLOCK_OVERHEAD

Description

Indicates the number of bytes used for Block Header.

Default Value

0x18

Parameter Range

Fixed to 0x18

Target File

Fee cfg.h

Sample Configuration

#define FEE_BLOCK_OVERHEAD 0x18

Maximum Blocking Time

Parameter Name

FEE_MAXIMUM_BLOCKING_TIME

Description

Indicates the maximum allowed blocking time for any Fee call.

Default Value

600.00

Parameter Range

Fixed to 600.00 ps.

Target File

Fee cfg.h

Sample Configuration

#define FEE_MAXIMUM_BLOCKING_TIME 600.00

Page Overhead

Parameter Name

FEE_PAGE_OVERHEAD

Description Indicates the Page Overhead in bytes.
Default Value 0x0

Parameter Range Fixed to 0x0

Target File Fee_cfg.h

Sample Configuration

#define FEE_PAGE_OVERHEAD 0x0

3.6.4 Sector Overhead

Parameter Name

FEE_VIRTUAL_SECTOR_OVERHEAD

Description Indicates the number of bytes used for Virtual Sector
Header.

Default Value 0x10

Parameter Range Fixed to 0x10

Target File Fee_cfg.h

Sample Configuration

#define FEE_VIRTUAL_SECTOR_OVERHEAD 0x10

27

Integration Guide

3.6.5 Virtual Page Size

Parameter Name

FEE_VIRTUAL_PAGE_SIZE

Description Indicates the virtual page size in bytes.
Default Value 0x8

Parameter Range Fixed to 0x8

Target File Fee cfg.h

Sample Configuration

#define FEE_VIRTUAL _PAGE_SIZE 0x8

3.6.6 Driver Index

Parameter Name

FEE_INDEX

Description

Instance ID of FEE module. Should always be 0x0

Default Value

0x0

Parameter Range

Fixed to Ox0

Target File

Fee cfg.h

Sample Configuration

#define FEE_INDEX 0x0

3.6.7 Job Error Notification

Parameter Name

FEE_NVM_JOB_ERROR_NOTIFICATION

Description

Call back function to notify a Job Error. This is only applicable if
polling mode is OFF.

Default Value

NvM_JobErrorNotification

Parameter Range

User defined function name

Target File

Fee cfg.h

Sample Configuration

#define FEE_NVM_JOB_ERROR_NOTIFICATION
NvM_JobErrorNotification

3.6.8 Job End Notification

Parameter Name

FEE_NVM_JOB_END_NOTIFICATION

Description

Call back function to notify a Job End. This is only applicable if
polling mode is OFF.

Default Value

NvM JobEndNotification

Parameter Range

User defined function name

28

Target File Fee cfg.h
Sample Configuration | #define FEE_NVM_JOB_END_NOTIFICATION
NvM_JobEndNotification

3.6.9 FEE Operating Frequency

Parameter Name FEE OPERATING FREQUENCY

Description Device operating frequency in MHz. It is equivalent to the
HCLK frequency in the TMS570 clock tree.

Default Value 160

Parameter Range Device dependent parameter. Refer to the device
datasheet to know the range.

Target File Fee cfg.h

Sample Configuration #define FEE_OPERATING_FREQUENCY 160

3.6.10 Polling Mode

Parameter Name FEE_POLLING_MODE

Description Indicates if polling mode is enabled/disabled. Currently, this
parameter should always be STD_ON.

Default Value STD _ON

Parameter Range STD_ON/ STD_OFF

Target File Fee cfg.h

Sample Configuration | #define FEE_POLLING_MODE STD_ON

3.6.11 Enable Error Correction

Parameter Name FEE FLASH ERROR_CORRECTION ENABLE

Description Used to enable/disable Error Correction Used to enable ECC for
EEPROmM data. This configuration parameter is no longer used.

Default Value STD_OFF

Parameter Range STD_ON/ STD_OFF

Target File Fee_cfg.h

Sample Configuration | #define FEE_FLASH_ERROR_CORRECTION_ENABLE
STD_OFF

29

Integration Guide

3.6.12 Error Correction Handling

Parameter Name

FEE_FLASH_ERROR_CORRECTION_HANDLING

Description

Indicates desired action to be taken on detection of bit
errors. Currently only Fee None is supported.

Default Value

Fee None

Parameter Range

Fee None or Fee Fix

Target File

Fee cfg.h

Sample Configuration

#define
FEE_FLASH _ERROR_CORRECTION_HANDLING

Fee None

3.6.13 Block Write Counter Save

Parameter Name

FEE_WRITECOUNTER_SAVE

Description Used to enable/disable saving of write/erase counter value
in to block header.

Default Value STD OFF

Parameter Range STD ON/ STD_OFF

Target File Fee cfg.h

Sample Configuration

#define FEE_WRITECOUNTER_SAVE STD_OFF

3.6.14 Enable CRC

Parameter Name

FEE_CRC_ENABLE

Description Used to enable/disable 16 bit CRC. If enabled, 16 bit CRC
is calculated and written into Block header.

Default Value STD OFF

Parameter Range STD_ON/ STD_OFF

Target File Fee cfg.h

Sample Configuration

#define FEE_ CRC_ENABLE STD_OFF

3.6.15 NumberOfEEPs

Parameter Name

FEE_NUMBER_OF EEPS

Description

Used to configure number of emulations on a single bank.

Default Value

1

Parameter Range

1-2

Target File

Fee cfg.h

Sample Configuration

#define FEE_NUMBER_OF_EEPS 1

30

3.6.16

Number of Blocks

Parameter Name

FEE_NUMBER_OF BLOCKS

Description Defines the number of Data Blocks used for EEPROM
emulation.

Default Value 0x1

Parameter Range 0x1 to OXFFFE

Target File Fee_cfg.h

Sample Configuration

#define FEE_NUMBER_OF_BLOCKS 0x10

3.6.17

Number of Virtual Sectors

Parameter Name

FEE_NUMBER_OF_VIRTUAL_SECTORS

Description

Defines the number of Virtual Sectors used for FEE..

Default Value

0x2

Parameter Range

Min :0x2 Max : 0x4,For TMS570LS01227/TMS570LS1113.
Min : 0x2 Max : 16, For TMS570LS05xx, TMS570LS07xx,
TMS570LS09xX.

Target File

Fee cfg.h

Sample Configuration

#define FEE_NUMBER_OF_VIRTUAL_SECTORS 0x2

3.6.18 Number of Virtual Sectors on EEP1

Parameter Name

FEE_NUMBER_OF VIRTUAL SECTORS EEP1

Description Defines the number of Virtual Sectors used for EEP1
Default Value 0x2

Parameter Range 0 to FEE_ NUMBER OF_VIRTUAL SECTORS-2
Target File Fee cfg.h

Sample Configuration

#define FEE_NUMBER_OF_VIRTUAL_SECTORS_EEP1 0x2

3.6.19

Number of Eight Byte Writes

Parameter Name

FEE_NUMBER_OF_EIGHTBYTEWRITES

Description Defines the number of 8 byte writes to be performed in Main
Function.

Default Value 0x1

Parameter Range 1to 255

Target File Fee cfg.h

Sample Configuration

#define FEE_NUMBER_OF_EIGHTBYTEWRITES 0x1

31

Integration Guide

3.6.20 Maximum Number of non configured blocks to copy

Parameter Name

FEE_NUMBER_OF_UNCONFIGUREDBLOCKSTOCOPY

Description

Defines the maximum number non configured blocks to copy.

Default Value

0x0

Parameter Range

0 to 255

Target File

Fee cfg.h

Sample Configuration

#define FEE_NUMBER_OF _
UNCONFIGUREDBLOCKSTOCOPY 0x0

3.6.21 Address Range check during Read/Write

Parameter Name

FEE_CHECK_BANK7_ACCESS

Description

Defines the maximum number non configured blocks to copy.

Default Value

STD_OFF

Parameter Range

STD_ON/STD_OFF

Target File

Fee cfg.h

Sample Configuration

#define FEE_CHECK_BANK7 ACCESS STD OFF

3.6.22 Number of blocks and Data Sets

Parameter Name

FEE_TOTAL_BLOCKS_DATASETS

Description Defines the total data sets in block configuration.
Default Value 1

Parameter Range 1-65536

Target File Fee_cfg.h

Sample Configuration

#define FEE_TOTAL_BLOCKS_DATASETS 1

3.6.23 Generate Device and Virtual Sector Structures

Parameter Name

FEE_GENERATE_DEVICEANDVIRTUALSECTORSTRUC

Description Used to enable/disable generation of Device and Virtual sector
structures.

Default Value STD OFF

Parameter Range STD ON/STD OFF

Target File Fee cfg.h

Sample Configuration | #define

FEE_GENERATE_DEVICEANDVIRTUALSECTORSTRUC
STD_OFF

32

Note: When FEE_GENERATE_DEVICEANDVIRTUALSECTORSTRUC=STD_ON,
device (Device_FlashDevice) and virtual sector
configuration(Fee_VirtualSectorConfiguration) structures are populated during
runtime. Also, these structures will be placed in RAM. Projects should take care
that only FEE driver has access to these structures. When it's STD_OFF,
structures are places in flash and are const.

3.6.24 Required Virtual Sector Size

Parameter Name

FEE_VIRTUALSECTOR_SIZE

Description

Defines the size of virtual sector.

Default Value

None

Parameter Range

4-32(see below note)

Target File

Fee cfg.h

Sample Configuration

#define FEE_VIRTUALSECTOR_SIZE 4

Note: Depending on the device, parameter range can be different.

For TMS570LS12xx/11xx family devices, FEE bank is 4*16KB. Macro can take a value of
16 or 32. For TMS570LS09xx, TMS570LS07xx, TMS570LS05xx family devices, FEE bank
is 16*4KB. Macro can take a value of 4 or 8 or 12 or 16 or 32.

FEE_VIRTUALSECTOR_SIZE * FEE_NUMBER_OF_VIRTUAL_SECTORS should not
exceed the total available FEE bank size on device. This macro is only used when
FEE_GENERATE_DEVICEANDVIRTUALSECTORSTRUC is STD_ON. Based on
FEE_VIRTUALSECTOR_SIZE and FEE_NUMBER_OF_VIRTUAL_SECTORS, elements
of the structure Fee_VirtualSectorConfiguration will be populated during runtime.

3.6.25 FEE bank Physical Sector Size

Parameter Name

FEE_PHYSICALSECTOR_SIZE

Description

Defines the size of one physical sector on the device.

Default Value

None

Parameter Range

4/16(see below note)

Target File

Fee cfg.h

Sample Configuration

#define FEE_PHYSICALSECTOR_SIZE 4

Note: This macro can only have 4/16 as value.

For TMS570LS12xx/11xx family devices, sector size is 16. For TMS570LS09xx,
TMS570LS07xx, TMS570LS05xx family devices, sector size is 4. This macro is only used
when FEE_GENERATE_DEVICEANDVIRTUALSECTORSTRUC is STD_OFF. This
parameter is used to select device specific files.

33

Integration Guide

3.6.26 Virtual Sector Configuration

Array Name FEE_VirtualSectorConfiguration
Description Used to define a Virtual Sector
Array Type Fee_VirtualSectorConfigType.
This is a structure having the following members.
Members FeeVirtualSectorNumber Virtual Sector's Number.
Flash Bank for EEPROM
FeeFlashBank emulation, Only Bank 7 for
F021 devices.
Target File Fee cfg.c

The configurations described below are repeated for each Virtual Sector.

3.6.26.1 FeeVirtualSectorNumber

Parameter Name

FeeVirtualSectorNumber

Description

Each Virtual Sector is assigned a number starting from 0x1

Default Value

0x1

Parameter Range

Min : 0x1, Max : 0x4,For
TMS570LS01227/TMS570LS1113
Min : Ox1 Max : 16, For TMS570LS05xx, TMS570LS07xx,

TMS570LS09xx
Target File Fee cfg.c
3.6.26.2 FeeFlashBank
Parameter Name FeeFlashBank

Description

Indicates the Flash Bank used by the Virtual Sector. All the

emulation is supported only on Bank 7 for F021 devices

Default Value

0x7 for FO21 devices

Parameter Range

Fixed to Ox7 for FO21 devices.

3.6.26.3

Target File Fee cfg.c
FeeStartSector
Parameter Name FeeStartSector

Description

Indicates the Flash Sector in the Bank used by the Virtual
Sector as the Start sector.

Default Value

0x0

34

Virtual Sectors should use the same Flash Bank. EEPROM

Parameter Range

Device specific, can use any Sector of the selected Flash
Bank. Please refer to the device datasheet “Flash Memory
Map” for more details.

Target File Fee cfg.c
3.6.26.4 FeeEndSector
Parameter Name FeeEndSector

Description

Indicates the Flash Sector in the Bank used by the Virtual Sector
as the End sector.

Default Value

0x0

Parameter Range

Device specific, can use any Flash Sector of the selected Flash
Bank. It should be greater than the FEE Start Sector. Please
refer to the device datasheet “Flash Memory Map” for more
details.

Target File

Fee cfg.c

3.6.26.5 Sample Virtual Sector Configuration

The following code snippet indicates one of the possible configurations for the Virtual

Sectors:

[* Virtual Sector Configuration */
const Tl_FeeVirtualSectorConfigType TI_FeeVirtualSectorConfiguration[] =

/* Virtual Sector 1 */

*/
*
*

*
*
*

{
1, /*Virtual sector number */
7, [*Bank
0, /* Start Sector
0, /*End Sector
}y
/* Virtual Sector 2 */
{
2, [* Virtual sector number */
7, [*Bank
1, [* Start Sector
1, /*End Sector
}1

Note: All the Virtual Sectors should have the same Flash Bank.
Only Bank 7 is supported for EEPROM emulation on FO21 devices.

35

Integration Guide

3.6.27 Block Configuration

Array Name Fee BlockConfiguration
Description Used to define a Data Block
Array Type Fee_BlockConfigType.
This is a structure having the following members.
Members FeeBlockNumber Indicates Block's
Number.
FeeBlockSize Defines Block's Size in
bytes.
FeelmmediateData Ind|cates_ if the plock is
used for immediate data.
. Number of write cycles
FeeNumberOfWriteCycles required for this biock .
FeeDevicelndex _Ind|cates the device
index.
Indicates the number of
FeeNumberofDatasets Datasets for this Block.
Indicates on which EEP,
FeeEEPNumber this block is configured.
Target File Fee cfg.c

The configurations described below are repeated for each Data Block.

3.6.27.1 FeeBlockNumber

Parameter Name

FeeBlockNumber

Description

Each block is assigned a unique number starting from 0x1.

Default Value

Parameter Range

Min : 0x1, Max : OXxFFFE

Target File

Fee cfg.c

3.6.27.2 FeeBlockSize

Parameter Name

FeeBlockSize

Description

Indicates the size of the Block in bytes.

Default Value

Parameter Range

0x1 to OXFFFE

Target File

Fee cfg.c

36

3.6.27.3 FeelmmediateData

Parameter Name

FeelmmediateData

Description

Indicates if the block is used for immediate data.

Default Value

FALSE

Parameter Range

TRUE / FALSE

Target File Fee cfg.c
3.6.27.4 FeeNumberOfWriteCycles
Parameter Name FeeNumberOfWriteCycles

Description

Indicates the number of clock cycles required to write
to a flash address location.

Default Value

Ox1

Parameter Range

Device or core/flash tech dependent parameter.

Target File

Fee cfg.c

3.6.27.5 FeeDevicelndex

Parameter Name

FeeDevicelndex

Description Indicates the device index. This will always be 0.
Default Value 0x0
Parameter Range Fixed to Ox0
Target File Fee cfg.c
3.6.27.6 FeeNumberOfDataSets
Parameter Name FeeNumberOfDataSets

Description

Indicates the number of Datasets for this particular
Block .

Default Value

0x1
Parameter Range 0x1 to OXFF
Target File Fee cfg.c

37

Integration Guide

3.6.27.7 FeeEEPNumber

Parameter Name FeeEEPNumber

Description Indicates into which EEP, this block is configured.
Default Value 0x0

Parameter Range 0x0 to Ox1

Target File Fee cfg.c

3.6.27.8 Sample Block Configuration
The following code snippet indicates one of the possible configurations for the Blocks:
/* Block Configuration */

const Tl_FeeBlockConfigType Tl_Fee_BlockConfiguration[] =

/* Block 1 */
0x01, /* Block number */
0x004, /* Block size */

0x10, /* Block number of write cycles */
TRUE, /* Block immediate data used */

0, /* Device Index */
1, /* Number of DataSets */
0 /* EEP Number */
|3
/* Block 2 */
0x02, /* Block number */
0x008, /* Block size */

0x10, /* Block number of write cycles */
TRUE, /*Block immediate data used */

0, /* Device Index */
2, /* Number of DataSets */
1 /* EEP Number */
}1
/* Block 3 */
0x03, /* Block number */
0x0004, /* Block size */

0x10, /* Block number of write cycles */
TRUE, /*Block immediate data used */

0, /* Device Index */
3, /* Number of DataSets */
1 /* EEP Number */

}1

/* Block 4 */

{
0x04, /* Block number */
0x001A, /* Block size */

38

0x10, /* Block number of write cycles */
TRUE, /*Block immediate data used */

0, /* Device Index */
4, /* Number of DataSets */
0 /* EEP Number */

39

Integration Guide

3.7 API Classification

This section introduces the application-programming interface for the AutoSAR FEE Driver
by grouping them into logical units. This is intended for the user to get a quick understanding
of the AutoSAR FEE Driver APIs. For detailed descriptions please refer to the API
specification section that follows this section.

3.7.1 Initialization

The AutoSAR FEE Driver APIs that are intended for use in initialization of the FEE module
are listed below.

Name Description

Fee Init Used to initialize the FEE module
4-4, AutoSAR FEE Driver Initialization APIls

3.7.2 Data Operations

The AutoSAR FEE Driver APIs that are intended for performing Data operations on Data
Blocks are listed below.

Name Description

Fee Write Used to initiate a Write Operation to a
Data Block. Fee_MainFunction should
be called at regular intervals to finish
the Write Operation

Fee Read Fee_MainFunction should be called at
regular intervals to finish this Operation

Fee_ EraselmmediateBlock Used to initiate an Erase Operation of a
Data Block. Fee_MainFunction should
be called at regular intervals to finish
this Operation

Fee_InvalidateBlock Used to initiate an Invalidate Operation
on a Data Block. Fee_ MainFunction
should be called at regular intervals to
finish this Operation

4-5. AutoSAR FEE Driver Data Operation APIs

40

3.7.3 Information

The AutoSAR FEE Driver APIs that are intended to get information about the status of the
FEE Module are listed below.

Name Description

Fee GetVersioninfo Used to get the Driver version.

Fee GetStatus Used to get the status of the FEE module.

Fee GetJobResult Used to get the job result of a Data
Operation.

4-6. AutoSAR FEE Driver Information APls

3.7.4 Internal Operations

The AutoSAR FEE Driver APIs that are used to perform internal operations of the FEE
Module are listed below.

Name Description

Fee_MainFunction Used to complete the Data Operations
initiated by any of the Data Operation
functions.

4-7. AutoSAR FEE Driver Internal Operation APIs

3.7.5 Cancel/ Terminate Operations

The AutoSAR FEE Driver APIs that are used to cancel/terminate an ongoing Data
Operation are listed below.

Name Description

Fee_ Cancel Used to cancel an ongoing write, erase,
invalidate or read operation.
4-8. AutoSAR FEE Driver Terminate/Cancel Operation APIs

3.7.6 Error Information and Recovery Operations

The Tl FEE Driver APIs that are used to provide error information and recover from severe
errors.

Name Description

Tl _FeeErrorCode Function to know the error type.
Function to recover from severe errors.

TI_Fee_ErrorRecovery
4-9. AutoSAR FEE Driver Error Info and Recovery APIs

41

Integration Guide

3.7.7 Suspend/Resume Erase Sector

The Tl FEE Driver APlIs that are used to suspend/Resume erasing of sector.

Name Description

Tl_Fee_SuspendResumeErase | Function to suspend/resume erasing
of sectors.
4-10. Tl FEE Driver Suspend/Resume Erase Sector APIs

42

3.8 Integration Example

This section depicts a flow chart for a typical FEE operation.

-y . . f
Initialization To be called only once at the
Fee_Init() beginning to initialize the FEE
module.

A 4

FEE is in IDLE state after
successful initialization

Call any one of the data

operation functions as required.
A new operation can be initiated
only when the module is in “Idle”

v state.
Schedule a Data Operation//k

FEE_Write() /
FEE_EraselmmediateBlock() /
FEE_InvalidateBlock() /

n
>

To be called at regular
intervals to complete the Data

HES Rt) operation.

:!

v v/
Schedule Other Fee Main() —Jo.—.c.c.o.o. - |
Application Tasks ¥

T Y Tl_Fee_Main calls
e m e 1 ; TI_Feelnternal_FeeM
v ; anager
1

Fee GetStatus()

'

No Called by Fee_Main() whenever in
“Idle” state to handle internal

Yes

Fee_GetJobRésuIt() Returns the Job result of the last
operation.

43

Integration Guide

3.9 API Specification

This section constitutes the detailed reference for the entire API set published to users of the
AutoSAR FEE Driver.

For each of the published API listed, the following attributes are specified

e Prototype: The signature of the function and or macro method in question
e Description: The functionality of the procedure or macro

e Arguments: The list of parameters supplied by the user

e Return value: The evaluated return value from the procedure invoked

3.9.1 AutoSAR FEE Driver Functions

3.9.1.1 Fee Initilization Function

Prototype void Fee Init()
Description Used to initialize the FEE module
Arguments None

Return value None

The function Fee_Init() shall initialize the Fee module. This function shall initialize all Flash
Memory relevant registers (hardware) with parameters provided in the given configuration
set.

The function Fee_Init() shall initialize all Fee module global variables and those controller
registers that are needed for controlling the flash device and that do not influence or
depend on other (hardware) modules. Registers that can influence or depend on other
modules shall be initialized by a common system module.

This function shall set the Fee module state to MEMIF_IDLE after successfully finishing the
Fee module initialization.

Note: Do not call Fee_Init APl multiple times in a single power cycle. There are
chances of some blocks getting lost(if there are different block configurations for
different instances of Fee_Init call), if it's called multiple times. If project
requirement needs to call Fee_Init multiple times, make sure .data and .bss sections
are cleared before calling Fee_Init.

44

3.9.1.2

Fee Write Function

Std_ReturnType Fee_Write(

Prototype uint16 BlockNumber,
uint8* DataBufferPtr
)
Description Used to initiate a Write Operation on a Data

Block / DataSet within a Data Block

BlockNumber

The BlockNumber should comprise of the
number of the logical block and the Dataset
index within that logical block. The number of the
logical block is left shifted by the maximum
number of Datasets configures
(NVM_DATASET_SELECTION_BITS) and then
combined with the Dataset index to obtain the
BlockNumber parameter.

DataBufferPtr

Arguments

Pointer to data buffer.

Return value

E_OK: The write job was accepted by the Fee
module

E_NOT_OK: The write job was not accepted by
the Fee module.

The function Fee_Write() shall take the block start address and calculate the
corresponding memory write address. This function shall copy the given/computed
parameters to module internal variables, initiate a write job, set Fee module status to
MEMIF_BUSY, set the job result to MEMIF_JOB_PENDING and return with E_OK.

The Fee module shall execute the job of the function Fee_Write() asynchronously within the
Fee module’s main function. This function shall write one or more complete flash pages to
the Flash device. The job of this function shall program a Flash memory block with data

provided via DataBufferPtr.

This function shall check the following:

1. That the write length is greater than 0. If this check fails, this function shall reject
the Write job and return with E_NOT_OK.

2. That the Fee module has been initialized. If this check fails, this function shall
reject the Write job and return with E_NOT_OK.

3. That the Fee module is currently not busy. If this check fails, this function shall
reject the Write job and return with E_NOT_OK.

4. The given data buffer pointer for not being a null pointer. If this check fails, this
function shall reject the Write job and return with E_ NOT_OK.

Projects can configure FEE_NUMBER_OF_EIGHTBYTEWRITES to suitable value. By

default this is Ox1. This means 8 bytes of data are written for every main function call. If this

parameter is configured to 0x2, 16 bytes of data are written.

45

Integration Guide

3.9.1.3

Fee Read Function

Std_ReturnType Fee_Read(
Prototype uint16 BlockNumber,
uint16 BlockOffset,
uint8* DataBufferPtr,
uintl6 Length

)

Description Used to perform a Read Operation on a Data Block /
DataSet within a Data Block

BlockNumber | The BlockNumber should comprise of the number of
the logical block and the Dataset index within that
logical block. The number of the logical block is left
shifted by the maximum number of Datasets
configures (NVM_DATASET_SELECTION_BITS)
and then combined with the Dataset index to obtain
the BlockNumber parameter.

% Read address offset inside the block.
% BlockOffset
S o e e
< Length '
Return value E_OK: The Read job was completed successfully.

E_NOT_OK: The Read job was not completed
successfully.

The function Fee Read() shall take the block start address and offset and calculate the
corresponding memory read address. The address offset and length parameter can
take any value within the given types range. This allows reading of an arbitrary number
of bytes from an arbitrary star address inside a logical block.

The Fee module shall execute the job of the function Fee_Read() asynchronously
within the Fee module’s main function. This function shall initiate a read operation
which copies a continuous Flash memory block starting from the computed start
address to the size of Length to the buffer pointed to DataBufferPtr. This function shall
set Fee module status to MEMIF_BUSY, set the job result to MEMIF_JOB_PENDING
and return with E_OK.

This function shall check the following:

1. That the read length is greater than 0. If this check fails, this function shall reject
the Read job and return with E_NOT_OK.

2. That the Fee module has been initialized. If this check fails, this function shall
reject the Read job and return with E_NOT_OK.

3. That the Fee module is currently not busy. If this check fails, this function shall
reject the Read job and return with E_NOT_OK.

4. The given data buffer pointer for not being a null pointer. If this check fails, this
function shall reject the Read job and return with E_NOT_OK.

Main function will do complete data read in single main function call.

46

3914

Fee Erase Function

Prototype

Std_ReturnType Fee_EraselmmediateBlock(
uint16 BlockNumber

)

Description

Used to initiate a logical Erase operation on a Data
Block / DataSet within a Data Block

BlockNumber

Arguments

The BlockNumber should comprise of the number of
the logical block and the Dataset index within that
logical block. The number of the logical block is left
shifted by the maximum number of Datasets
configures (NVM_DATASET_SELECTION_BITS)
and then combined with the Dataset index to obtain
the BlockNumber parameter.

Return value

E_OK: The Erase job was accepted by the Fee
module

E_NOT_OK: The Erase job was not accepted by
the Fee module.

The function Fee_ EraselmmediateBlock() shall take the block number calculate the
corresponding memory address for that block.

The Fee module shall execute the job of the function Fee_ EraselmmediateBlock()
asynchronously within the Fee module’s main function.

The function Fee EraselmmediateBlock() ensures that the Fee module can write
immediate data. As the Fee module implementation should always be ready to write
data, unless the block is marked as FeelmmediateData == FALSE, it shall return
E_OK. If the block is marked as FeelmmediateData == FALSE it will return

E_NOT_OK.

This function shall check the following:

1. That the Fee module has been initialized. If this check fails, this function shall
reject the Erase job and return with E_NOT_OK.

2. That the Fee module is currently not busy. If this check fails, this function shall
reject the Erase job and return with E_NOT_OK.

3. The given Block Number is marked for Immediate Data Write. If this check fails,
this function shall reject the Erase job and return with E_NOT_OK.

47

Integration Guide

3.9.1.5

Fee Invalidate Function

Prototype

Std_ReturnType Fee_InvalidateBlock(
uint16 BlockNumber

)

Description

Used to initiate a logical Invalidate operation on a
Data Block / DataSet within a Data Block

BlockNumb
er

Arguments

The BlockNumber should comprise of the number of
the logical block and the Dataset index within that
logical block. The number of the logical block is left
shifted by the maximum number of Datasets
configures (NVM_DATASET_SELECTION_BITS) and
then combined with the Dataset index to obtain the
BlockNumber parameter.

Return value

E_OK: The Invalidate job was accepted by the Fee
module

E_NOT_OK: The Invalidate job was not accepted by
the Fee module.

The function Fee_ InvalidateBlock() shall take the block number calculate the
corresponding memory address for that block.

The Fee module shall execute the job of the function

Fee InvalidateBlock() asynchronously within the Fee module’s main function. This
command shall change the valid bit in the Data Block header to invalidate it.

This function shall check the following:

1. That the Fee module has been initialized. If this check fails, this function shall
reject the Invalidate job and return with E_NOT_OK.

2. That the Fee module is currently not busy. If this check fails, this function shall
reject the Invalidate job and return with E_NOT_OK.

48

3.9.1.6 Fee Get Version Info Function

void Fee_GetVersionInfo(

Prototype Std_VersionInfoType* VersionInfoPtr
)

Description Function to return the version information of the Fee
module.

Arguments None

Return value None

The function Fee_GetVersioninfo() shall return the version information for the Fee module.
The version information includes:

- Module Id

- Vendor Id

- Fee specific version numbers MM.mm.rr
e MM — Major Version
e mMm — Minor Version
o rr — Revision

The function Fee_GetVersioninfo() shall be pre-compile time configurable On/Off by the
configuration parameter FEE_VERSION_INFO_API.

3.9.1.7 Fee Get Status Function

Prototype Memlf StatusType Fee GetStatus()

Description Function to return the status of the Fee module.

Arguments None

Return value MEMIF_UNINIT: The Fee Module has not been
initialized.

MEMIF _IDLE: The Fee Module is currently idle.

MEMIF_BUSY: The Fee Module is currently busy.
MEMIF_BUSY_INTERNAL: The Fee Module is
currently busy with internal management
operations

The function Fee_ GetStatus() shall return the status information for the Fee module.

The function Fee_ GetStatus() shall be pre-compile time configurable On/Off by the
configuration parameter FEE_GET_STATUS_API.

49

Integration Guide

3.9.1.8

3.9.1.9

Fee Get Job Result Function

Prototype Memlf JobResultType Fee GetJobResult()
Description Function to get the job result from the Fee module.
Arguments None

MEMIF_JOB_OK: The last job has finished
Return value | syccessfully.

MEMIF_JOB_PENDING: The last job is waiting for
execution or is currently being executed.

MEMIF_JOB_FAILED: The last
read/erase/write/compare job failed.

MEMIF_BLOCK _INCONSISTENT: The requested
block is inconsistent, it may contain corrupted data.

MEMIF_JOB_CANCELLED: The last job has been
cancelled.

MEMIF_BLOCK_INVALID: The requested block has
been invalidated. The requested read operation
cannot be performed.

The function Fee_GetJobResult() shall return the result of the last job synchronously. The
erase, write, read and invalidate functions shall share the same job result, therefore, only
the result of the last job can be queried.

The function Fee_GetJobResult shall be pre-compile time configurable On/Off by the
configuration parameter FEE_GET_JOB_RESULT_API.

Fee Main Function

Prototype void Fee MainFunction()

Description Function to handle the requested read/write/erase jobs
and the internal management operations of the Fee
module.

Arguments None

Return value None

The function Fee_MainFunction() shall asynchronously handle the requested read/write/
erase jobs respectively and the internal management operations.

The function shall accept only one read, write, or erase job at a time. When a job has been
initiated, the Fee module’s environment shall call the function Fee_MainFunction() cyclically
until the job is finished. This function shall only process as much data in one call cycle as
statically configured for the current job type (read, write or erase).

After a read, erase or write job has been finished; the function shall set the Fee module’s
job result to MEMIF_JOB_OK if it is currently in state

50

MEMIF_JOB_PENDING. Otherwise, it shall leave the result unchanged.
Furthermore, the function shall set the Fee module’s state to MEMIF_IDLE and call
the job end notification function.

This function shall at most issue one sector erase command (to the hardware) in

each cycle.

3.9.1.10 Fee Manager Function

Fee_StatusType

Prototype Tl Feelnternal FeeManager(void)

Description Function to handle the internal operations of the FEE
driver.

Arguments None

Return value

FEE_OK : Function detected No Error

FEE_ERROR: Function detected an Error
condition and returned.

The function TI_Feelnternal_FeeFeeManager() manages the Flash EEPROM Emulation
and is called when no other job is pending by the Fee_MainFunction. This function handles
all the background tasks to manage the FEE.

This routine is responsible to

. Determine whether a Virtual Sector Copy operation is in progress. If so, it should
identify all the Valid Data Blocks in the old Virtual Sector and copy them to the new

Virtual Sector.

o Determine if any of the Virtual Sector needs to be erased. If so, it should erase that

particular Virtual Sector.

. This function is only called when the Fee module is in MEMIF_IDLE state. It should
set the Fee module to MEMIF_BUSY_INTERNAL state.

3.9.1.11 Fee Cancel Function

void Fee_Cancel(void)

Prototype

Description Function to cancel/terminate an ongoing operation.
Arguments None

Return value None

The function Fee_Cancel() provides functionality for cancelling/terminating an ongoing
operation. This function shall cancel an ongoing flash read, write or erase job and shall
reset the internal variables making the module ready to accept a new job. This function
shall operate synchronously so after returning from this function a new job can be started.

51

Integration Guide

3.9.1.12 TI_FeeErrorCode

This function provides functionality to identify occurrence of an error.
It returns ‘0’ if no error has occurred else it returns an Error code.

Tl_FeeErrorCodeType Tl_FeeErrorCode(uint8

Prototype USEEPIndex)
Description Function to know the error type.
Arguments EEP Index

Return value Error code

3.9.1.13 TI_Fee ErrorRecovery

This function provides functionality to recover from any severe errors.

Void TlI_Fee_ErrorRecovery(Tl_Fee ErrorCodeType Error
Prototype Code, uint8 u8VirtualSector)
o Function to recover from severe errors.
Description
Arguments Error_TwoActiveVS
Error_TwoCopyVS
Error_SetupStateMachine
Error Code
Error_NoActiveVS
Error_CopyButNoActiveVS
Error_NoFreeVS
Virtual Sector Number
Return value | None

3.9.1.14 TI_Fee_SuspendResumeErase

This function provides functionality to suspend/Resume of erasing a sector.

void
Prototype Tl_Fee_SuspendResumeErase(TI_Fee_EraseCommandType
Command)

Description | Function to suspend/Resume erasing of sector.

Arguments | Suspend_Erase/Resume_Erase

Return none
value

52

Note: This API has to be called once after Fee_Init is executed with Suspend_Erase as
function argument. It has to be called again after application has completed all the
initialization sequence with Resume_Erase as function argument.

3.10 Privilege Mode access
FEE needs following API’s to be executed in Privilege mode:
- Fee_Init
- Tl_Feelnternal_WriteDataF021

- Tl _Fee Read

3.11 Deviations from Autosar3.x requirements

- Non Polling mode not supported.

- Immediate block writing not accepted when FEE is performing copy of blocks / erase of
sectors.

- No Jobs accepted during copy of blocks /erase of sectors ongoing.(The write job which
triggered the copy operation will be pending until copy of blocks is completed and then
erasing of a sector is completed. If there is a powerloss during copying of blocks, then the
next Fee_Init will resume COPY operation.)

3.12 Important Notes

- If projects are using bootloader, make sure the active bank in FMAC register is same as
before the start of bootloader and after the completion of bootloader.

- Projects should not call Fee_Init mutiple times in one power cycle. If it is required to call,
make sure all the global, static variable sections are cleared before calling Fee_Init.

53

	AutoSAR FEE Driver
	Overview
	The EEPROM Emulation Flash bank is divided into two or more Virtual Sectors. Each Virtual Sector is further partitioned into several Data Blocks. Data Blocks can be further partitioned into Datasets. A minimum of two Virtual Sectors are required for ...
	The initialization routine (Fee_Init) identifies which Virtual Sector to be used and marks it as Active. The data is written to the first empty location in the Active Virtual Sector. If there is insufficient space in the current Virtual Sector to upda...
	Virtual Sectors and Data Blocks have certain space allocated to maintain the status information which is described in more detail in the following sections.
	The Virtual Sector Structure is the basic organizational unit used to partition the EEPROM Emulation Flash Bank. This structure can contain one or more contiguous Flash Sectors contained within one Flash Bank. A minimum of 2 Virtual Sectors are requ...
	The internal structure of the Virtual Sector contains a Virtual Sector Header, a static Data Structure and the remaining space is used for Data Blocks.
	3.10 Privilege Mode access
	3.11 Deviations from Autosar3.x requirements
	3.12 Important Notes

